Skip to main content
Log in

Electrolyte-UNIQUAC-NRF Model Based on Ion Specific Parameters for the Correlation of Mean Activity Coefficients of Electrolyte Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Electrolyte-UNIQUAC-NRF excess Gibbs function was applied to estimate ion specific adjustable parameters of various salts by global optimization of the experimental activity coefficients of 54 electrolyte solutions. Twenty-three ion specific parameters were obtained for water and several cations and anions. The estimated individual ion parameters have been used to predict osmotic coefficient of electrolyte solutions. By using only the specific values for ions, the anion–cation and ion–water interaction parameters of different salts can be precisely estimated. Consequently, the interaction parameters of sparingly insoluble salts without experimental activity data can be easily calculated. For a case study, the solubility of CaSO4 was predicted in relatively good agreement with experimental values over a wide range of temperatures up to 473.18 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A ϕ :

Debye–Hückel constant

g :

Gibbs energy function

u :

Internal energy function

u ij :

Energy interaction parameter

I x :

Ionic strength on the mole fraction basis

m :

Molality

M W :

Molecular weight of water

R :

Universal gas constant

T :

Absolute temperature

x :

Mole fraction

X :

Effective mole fraction

Z :

Coordination number

z :

Charge number of ionic species

r i :

Volume parameter of species i

q i :

Surface parameter of species i

N p :

Number of experimental data

γ :

Activity coefficient

ν :

Stoichiometric ionization number

Γ ij :

Nonrandom factor

τ ij :

Interaction energy parameter between anion and cation

τ Kw :

Interaction energy parameter between ion and solvent

\( \theta^{\prime}_{i} \) :

Effective area fractions of i

\( \theta^{\prime}_{ij} \) :

Effective local area fractions of j around i

\( \Upphi^{\prime}_{i} \) :

Effective volume fraction

σ γ :

Standard deviation of activity coefficient

σ ϕ :

Standard deviation of osmotic coefficient

calc:

Calculated

exp:

Experimental

ex:

Excess

LR:

Long-range

SR:

Short-range

*:

Unsymmetrical convention

∞:

Infinite dilution

c:

Combinatorial

r:

Residual

A:

Anion

C:

Cation

W:

Water

±:

Mean

References

  1. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibia, 3rd edn. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  2. Zemaitis, J.F., Clark, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics. American Institute of Chemical Engineers, New York (1986)

    Book  Google Scholar 

  3. Cruz, J.L., Renon, H.: A new thermodynamic representation of binary electrolyte solutions, nonideality in the whole range of concentrations. AICHE J. 24, 817–829 (1978)

    Article  CAS  Google Scholar 

  4. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  5. Chen, C.C., Evans, L.B.: A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J. 32, 444–454 (1986)

    Article  CAS  Google Scholar 

  6. Haghtalab, A., Vera, J.H.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AICHE J. 34, 803–813 (1988)

    Article  CAS  Google Scholar 

  7. Zhao, E., Sauve, YuM, Khoshkbarchi, M.K.: Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib. 173, 161–175 (2000)

    Article  CAS  Google Scholar 

  8. Sadeghi, R.: New local composition model for electrolyte solution. Fluid Phase Equilib. 231, 53–60 (2005)

    Article  CAS  Google Scholar 

  9. Messnaouia, B., Ouiazzane, S., Bouhaoussc, A., Bounahmidib, T.: A modified electrolyte–Uniquac model for computing the activity coefficient and phase diagrams of electrolytes systems. CALPHAD 32, 566–576 (2008)

    Article  Google Scholar 

  10. Haghtalab, A., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281, 163–171 (2009)

    Article  CAS  Google Scholar 

  11. Christensen, C., Sander, B., Fredenslund, A., Rasmussen, P.: Towards the extension of UNIFAC to mixtures with electrolytes. Fluid Phase Equilib. 13, 297–309 (1983)

    Article  CAS  Google Scholar 

  12. Haghtalab, A., Shojaeian, A., Mazlomi, S.H.: Nonelectrolyte NRT-NRF model to study thermodynamics of strong and weak electrolyte solutions. J. Chem. Thermodyn. 43, 354–363 (2011)

    Article  CAS  Google Scholar 

  13. Haghtalab, A., Mazlomi, S.H.: A nonelectrolyte local composition model and its application in the correlation of the mean activity coefficient of aqueous electrolyte solutions. Fluid Phase Equilib. 275, 70–77 (2009)

    Article  CAS  Google Scholar 

  14. Jaretun, A., Aly, G.: New local composition model for electrolyte solution: single solvent, single electrolyte system. Fluid Phase Equilib. 163, 175–193 (1999)

    Article  CAS  Google Scholar 

  15. Jaretun, A., Aly, G.: New local composition model for electrolyte solutions: multicomponent systems. Fluid Phase Equilib. 175, 213–228 (2000)

    Article  CAS  Google Scholar 

  16. Zafarani-Moattar, M.T., Majdan-Cegincara, R.: New local composition model for modeling of thermodynamic and transport properties of binary aqueous electrolyte solutions. CALPHAD 35, 109–132 (2011)

    Article  CAS  Google Scholar 

  17. Mazlomi, S.H.: An ion-based nonelectrolyte NRTL-NRF for aqueous electrolyte solutions. CALPHAD 51, 229–305 (2015)

    Google Scholar 

  18. Haghtalab, A., Asadollahi, M.A.: An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycolqdextran. Fluid Phase Equilib. 171, 77–90 (2000)

    Article  CAS  Google Scholar 

  19. Kawaguchi, Y., Kanai, H., Kajiwara, H., Arai, Y.: Correlation for activities of water in aqueous electrolyte solutions using ASOG model. J. Chem. Eng. Jpn. 14, 243–246 (1981)

    Article  CAS  Google Scholar 

  20. Correa, A., Comesana, J.F., Correa, J.M., Sereno, A.M.: Measurement and prediction of water activity in electrolyte solutions by a modified ASOG group contribution method. Fluid Phase Equilib. 129, 267–283 (1997)

    Article  CAS  Google Scholar 

  21. Sander, B., Fredenslund, A., Rasmussen, P.: Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1171–1183 (1986)

    Article  CAS  Google Scholar 

  22. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems. Chem. Eng. Sci. 51, 3675–3683 (1996)

    Article  CAS  Google Scholar 

  23. Thomsen, K.: Modeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model. Pure Appl. Chem. 77, 531–542 (2005)

    Article  CAS  Google Scholar 

  24. Haghtalab, A., Mokhtarani, B.: On extension of UNIQUAC-NRF model to study the phase behavior of aqueous two phase polymer–salt systems. Fluid Phase Equilib. 180, 139–149 (2001)

    Article  CAS  Google Scholar 

  25. Haghtalab, A., Dehghanitafti, M.: Electrolyte UNIQUAC-NRF model to study of acid gases in alkanolamines. Ind. Eng. Chem. Res. 46, 6053–6060 (2007)

    Article  CAS  Google Scholar 

  26. Haghtalab, A., Peyvandi, K.: Generalized electrolyte-UNIQUAC-NRF model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions. J. Mol. Liquids 165, 101–112 (2012)

    Article  CAS  Google Scholar 

  27. Furst, W., Renon, H.: Representation of excess properties of electrolyte solution using a new equation of state. AIChE J. 39, 335–343 (1993)

    Article  Google Scholar 

  28. Myers, J.A., Sandler, S.I., Wood, R.H.: An equation of state for electrolyte solutions covering wide ranges of temperature, pressure and composition. Ind. Eng. Chem. Res. 41, 3282–3297 (2002)

    Article  CAS  Google Scholar 

  29. Lin, Y., Thomsen, K., Hemptinne, J.C.: Multicomponent equations of state for electrolytes. AIChE J. 53, 989–1005 (2007)

    Article  CAS  Google Scholar 

  30. Haghtalab, A., Mazlomi, S.H.: A square-well equation of state for aqueous strong electrolyte solutions. Fluid Phase Equilib. 285, 96–104 (2009)

    Article  CAS  Google Scholar 

  31. Meissner, H.P., Tester, J.W.: Activity coefficients of strong electrolytes in aqueous solution. Ind. Eng. Chem. Process Des. Dev. 11, 128–133 (1972)

    Article  CAS  Google Scholar 

  32. Pitzer, K.S.: Thermodynamics of electrolytes. I. theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  33. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  34. Pitzer, K.S.: Electrolytes. from dilute solution to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  35. Guggenheim, E.A.: Mixtures. Oxford University Press, New York (1952)

    Google Scholar 

  36. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water 25 C. J. Phys. Chem. Ref. Data 1, 1074–1099 (1972)

    Article  Google Scholar 

  37. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: thirty six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764 (1981)

    Article  CAS  Google Scholar 

  38. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: the alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–309 (1978)

    Article  CAS  Google Scholar 

  39. Zaytsev, L.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC Press, Boca Raton (1992)

    Google Scholar 

  40. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of lead, copper, manganese and uranium. J. Phys. Chem. Ref. Data 8, 1005–1050 (1979)

    Article  CAS  Google Scholar 

  41. Goldberg, R.N., Nuttall, R.L., Staples, B.R.: Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of zinc, cadmium, and ethylene bis(trimethylammonium) chloride and iodide. J. Phys. Chem. Ref. Data 10, 1–55 (1981)

    Article  CAS  Google Scholar 

  42. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–316 (1965)

    Article  Google Scholar 

  43. Weast, R.C.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (1986)

    Google Scholar 

  44. Marshall, W.L., Slusher, R., Jones, E.R.: Aqueous system at high temperatures XIV. Solubility and thermodynamics relationship for CaSO4 in NaCl–H2O solutions from 40 to 200 °C, 0 to 4 molal NaCl. J. Chem. Eng. Data 9, 187–191 (1964)

    Article  CAS  Google Scholar 

  45. Møller, N.: The prediction of mineral solubilites in natural waters: a chemical equilibrium model for the system to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiana Peyvandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, H., Peyvandi, K. Electrolyte-UNIQUAC-NRF Model Based on Ion Specific Parameters for the Correlation of Mean Activity Coefficients of Electrolyte Solutions. J Solution Chem 46, 1202–1219 (2017). https://doi.org/10.1007/s10953-017-0635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0635-6

Keywords

Navigation