Skip to main content

Thermodynamics of Viscous Flow of tert-Butanol with Butylamines: UNIFAC–VISCO, Grunberg–Nissan and McAllister Three Body Interaction Models for Viscosity Prediction and Quantum Chemical (DFT) Calculations

Abstract

Thermodynamic activation parameters, enthalpies (ΔH ), entropies (ΔS ) and Gibbs energies (ΔG ) for viscous flow of the systems tert-butanol (TB)+n-butylamine (NBA), TB+di-n-butylamine (DBA) and TB+tri-n-butylamine (TBA) have been calculated from measured density and viscosity data at temperatures ranging from 303.l5 to 323.15 K over the composition range 0 ≤ x 2 ≤ 1, where x 2 is the mole fraction of TB. For all systems, the corresponding excess properties ΔH ‡E, ΔS ‡E and ΔG ‡E have been determined, which are negative in the whole range of composition. The observed negative excess activation properties have been accounted for in terms of dispersive forces and H-bonding. The derived properties are well represented by fourth degree polynomial equations whereas the excess properties could be fitted to third degree Redlich–Kister polynomial equations. Furthermore, the viscosities have been predicted by using the UNIFAC–VISCO model, Grunberg–Nissan model and McAllister three-body interaction model. The UNIFAC–VISCO model and Grunberg–Nissan model do not show good agreement with the experimental data, whereas the McAllister three-body interaction model shows excellent agreement for all three systems, with small average absolute percent deviations (AAD% = 0.6–2.3). The DFT-B3LYP method with the 6-311 G (d, p) basis set has been employed for the optimization of the geometry and calculation of the total energies of the pure compounds and their binary complexes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Sathyanarayana, B., Ranjithkumar, B., Jyostna, T.S., Satyanarayana, N.: Densities and viscosities of binary liquid mixtures of N-methylacetamide with some chloroethanes and chloroethenes at T = 308.15 K. J. Chem. Thermodyn. 39, 16–21 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    Pal, A., Kumar, H.: Excess molar volumes and viscosities of binary liquid mixtures of (polyether+ester) systems at 298.15, 308.15, and 318.15 K. Fluid Phase Equilib. 181, 17–32 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    Singh, S., Sethi, B., Katyal, R., Rattan, V.: Viscosities, densities, and speeds of sound of binary mixtures of o-xylene, m-xylene, p-xylene, and isopropylbenzene with 4-methylpentan-2-one at 298.15 K. J. Chem. Eng. Data 49, 1373–1375 (2004)

    CAS  Article  Google Scholar 

  4. 4.

    Clará, R.A., Marigliano, A.C.G., Campos, V.D.V., Sólimo, H.N.: Density, viscosity, vapour–liquid equilibrium, excess molar enthalpy, and their correlations of the binary system [1-pentanol+R-(+)-limonene] over the complete concentration range, at different temperatures. Fluid Phase Equilib. 293, 151–156 (2010)

    Article  Google Scholar 

  5. 5.

    González, B., Calvar, N., Gómez, E., Domínguez, Á.: Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 39, 1578–1588 (2007)

    Article  Google Scholar 

  6. 6.

    Iloukhani, H., Khanlarzadeh, K.: Densities, viscosities, and refractive indices for binary and ternary mixtures of N,N-dimethylacetamide (1) +2-methylbutan-2-ol (2) +ethyl acetate (3) at 298.15 K for the liquid region and at ambient pressure. J. Chem. Eng. Data 51, 1226–1231 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    Haghtalab, A., Shojaeian, A.: Volumetric and viscometric behaviour of the binary systems of N-methyldiethanolamine and diethanolamine with 1-butyl-3-methylimidazolium acetate at various temperatures. J. Chem. Thermodyn. 68, 128–137 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    Islam, S., Saleh, M.: Thermodynamic activation parameters for viscous flow of dilute aqueous solutions of ethylenediamine, trimethylenediamine and N, N-dimethyltrimethylenediamine. Phys. Chem. Liq. 48, 156–170 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    Rahman, I.M., Iwakabe, K., Uddin, M.A., Habibullah, M., Hasegawa, H.: Viscosities of the binary mixtures of hexan-1-ol and the isomeric derivatives of dimethylbenzenes: experimental results, correlation and prediction. J. Solution Chem. 44, 1584–1610 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    Oswal, S., Desai, H.: Studies of viscosity and excess molar volume of binary mixtures: 2. Butylamine+1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 161, 191–204 (1999)

    CAS  Article  Google Scholar 

  11. 11.

    Chevalier, J., Petrino, P., Gaston-Bonhomme, Y.: Estimation method for the kinematic viscosity of a liquid-phase mixture. Chem. Eng. Sci. 43, 1303–1309 (1988)

    CAS  Article  Google Scholar 

  12. 12.

    Gaston-Bonhomme, Y., Petrino, P., Chevalier, J.: UNIFAC–VISCO group contribution method for predicting kinematic viscosity: extension and temperature dependence. Chem. Eng. Sci. 49, 1799–1806 (1994)

    CAS  Article  Google Scholar 

  13. 13.

    Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    CAS  Article  Google Scholar 

  14. 14.

    McAllister, R.: The viscosity of liquid mixtures. AIChE J. 6, 427–431 (1960)

    CAS  Article  Google Scholar 

  15. 15.

    Chowdhury, F.I., Akhtar, S., Saleh, M.A.: Densities and excess molar volumes of tert-butanol with n-butylamine, di-n-butylamine and tri-n-butylamine. Phys. Chem. Liq. 47, 681–692 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    Chowdhury, F.I., Saleh, M.: Viscosities and deviations in viscosity of tert-butanol with n-butylamine, di-n-butylamine and tri-n-butylamine. J. Mol. Liq. 191, 156–160 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    CAS  Article  Google Scholar 

  18. 18.

    Redlich, O., Kister, A.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  19. 19.

    Corradini, F., Marcheselli, L., Marchetti, A., Tagliazucchi, M., Tassi, L., Tosi, G.: Viscosities and activation energies of viscous flow of the 1,2-ethanediol/N, N-dimethylformamide binary solvent system. Bull. Chem. Soc. Jpn 65, 503–511 (1992)

    CAS  Article  Google Scholar 

  20. 20.

    Singh, R.P., Sinha, C.P.: Viscosities and activation energies of viscous flow of the binary mixtures of n-hexane with toluene, chlorobenzene and 1-hexanol. J. Chem. Eng. Data 29, 132–135 (1984)

    CAS  Article  Google Scholar 

  21. 21.

    Hansen, H.K., Rasmussen, P., Fredenslund, A., Schiller, M., Gmehling, J.: Vapor–liquid equilibria by UNIFAC group contribution. 5. Revision and extension. Ind. Eng. Chem. Res. 30, 2352–2355 (1991)

    CAS  Article  Google Scholar 

  22. 22.

    Wittig, R., Lohmann, J., Gmehling, J.: Vapor–liquid equilibria by UNIFAC group contribution. 6. Revision and extension. Ind. Eng. Chem. Res. 42, 183–188 (2003)

    CAS  Article  Google Scholar 

  23. 23.

    Balslev, K., Abildskov, J.: UNIFAC parameters for four new groups. Ind. Eng. Chem. Res. 41, 2047–2057 (2002)

    CAS  Article  Google Scholar 

  24. 24.

    Tiegs, D., Rasmussen, P., Gmehling, J., Fredenslund, A.: Vapor–liquid equilibria by UNIFAC group contribution. Revision and extension. Ind. Eng. Chem. Res. 26, 159–161 (2003)

    Article  Google Scholar 

  25. 25.

    Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. Mc Graw-Hill, New York (1987)

    Google Scholar 

  26. 26.

    Rahman, Saleh, M.A., Chowdhury, F.I., Ahmed, Rocky, M.M.H., Akhtar, S.: Density and viscosity for the solutions of 1-butanol with nitromethane and acetonitrile at 303.15 to 323.15 K. J. Mol. Liq. 190, 208–214 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Isdale, J.D., MacGillivray, J.C.M., Cartwright, G.: Prediction of Viscosity of Organic Liquid Mixtures by a Group Contribution Method. National Engineering Laboratory, East Kilbride, Glasgow, Scotland (1985)

    Google Scholar 

  28. 28.

    Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision A. 02, vol. 200. Gaussian. Inc, Wallingford (2009)

    Google Scholar 

  29. 29.

    Kiss, G., Röthlisberger, D., Baker, D., Houk, K.N.: Evaluation and ranking of enzyme designs. Protein Sci. 19, 1760–1773 (2010)

    CAS  Article  Google Scholar 

  30. 30.

    Steiner, T.: The hydrogen bond in the solid state. Angewandte Chemie Int. Ed. 41(1), 48–76 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    Jeffrey, G.A., Jeffrey, G.A.: An introduction to Hydrogen Bonding, vol. 32. Oxford University Press, New York (1997)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial grant from the Ministry of Science, Information and Communication Technology, Government of the People’s Republic of Bangladesh, for the project “Physical Properties and Molecular Interactions in Liquid Systems” and the Department of Chemistry, University of Chittagong, Bangladesh. Additionally, we acknowledge the support from the University of Malaya through UMRG Grant No. RG375-15AFR.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Faisal I. Chowdhury or A. K. Arof.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, F.I., Khandaker, M.U., Zabed, H. et al. Thermodynamics of Viscous Flow of tert-Butanol with Butylamines: UNIFAC–VISCO, Grunberg–Nissan and McAllister Three Body Interaction Models for Viscosity Prediction and Quantum Chemical (DFT) Calculations. J Solution Chem 46, 1104–1120 (2017). https://doi.org/10.1007/s10953-017-0624-9

Download citation

Keywords

  • Thermodynamic activation parameter
  • UNIFAC–VISCO model
  • Grunberg–Nissan model
  • McAllister three-body interaction model
  • Density functional theory (DFT)