Skip to main content
Log in

Liquid–Liquid Equilibrium of Water + 1-Butanol + Inorganic Salt Systems at 303.15, 313.15 and 323.15 K: Experiments and Correlation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Liquid–liquid equilibria (LLE) and tie-line data of systems containing 1-butanol, water and NaCl, Na2SO4, NH4Cl or (NH4)2SO4 were investigated at 303.15, 313.15 and 323.15 K and atmospheric pressure. The salt decreases mutual solubilities of these two solvents leading to a higher degree of phase separation at equilibrium. The effect is more pronounced at high salt concentration. Temperature in the studied range had a minor effect on LLE behavior of these mixtures. Experimental data were correlated using a modified extended UNIQUAC model. Satisfactory agreement between the calculated and measured mass fractions of the components was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a :

Binary interaction parameter

G E :

Excess Gibbs energy

K :

Partition coefficient

M :

Number of tie lines

N :

Number of components

n :

Number of ions

q :

Surface area parameter

R :

Gas constant (J·mol−1· K−1)

r :

Volume parameter

T :

Temperature (K)

w :

Mass fraction

γ :

Activity coefficient for a component

i,j,k :

Component i, j, k

PDH:

Pitzer–Debye–Hückel term

UNIQUAC:

UNIQUAC term

Born:

Born term

I:

Equilibrium aqueous phase

II:

Equilibrium organic phase

exp:

Experimental value

calc:

Calculated value

References

  1. Hönig, V., Linhart, Z., Táborský, J., Mařík, J.: Determination of the phase temperature and the water solubility in the mixtures of gasoline with biobutanol and bioethanol. Agron. Res. 13, 550–557 (2015)

    Google Scholar 

  2. http://www.shalegas.international/2014/07/03/global-polyethylene-and-n-butanol-markets-are-set-to-grow-new-report-finds/ (2014). Accessed 15 Aug 2016

  3. Stoffers, M., Heitmann, S., Lutze, P., Górak, A.: Integrated processing for the separation of biobutanol. Part A: experimental investigation and process modeling. Green Process. Synth. 2, 101–120 (2013)

    CAS  Google Scholar 

  4. Santis, R.D., Marrelli, L., Muscetta, P.N.: Influence of temperature on the liquid–liquid equilibrium of the water–n-butyl alcohol–sodium chloride system. J. Chem. Eng. Data 21, 324–327 (1976)

    Article  Google Scholar 

  5. Xu, W., Min, J.: Liquid–liquid equilibrium for 1-butanol–water–KF and 1-butanol–water–K2CO3 systems. Wuhan Univ. J. Nat. Sci. 10(5), 892–896 (2005)

    Article  CAS  Google Scholar 

  6. Gomis, V., Ruiz, F., Asensi, J.C., Saquete, M.D.: Salt effects of lithium chloride, sodium bromide, or potassium iodide on liquid–liquid equilibrium in the system water + 1-butanol. J. Chem. Eng. Data 42, 74–77 (1997)

    Article  Google Scholar 

  7. Pirahmadi, F., Deghani, M.R., Behzadi, B., Seyedi, S.M., Rabiee, H.: Experimental and theoretical study on liquid-liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35 °C. Fluid Phase Equilib. 299, 122–126 (2010)

    Article  CAS  Google Scholar 

  8. Pirahmadi, F., Deghani, M.R., Behzadi, B.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NH4Cl at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 325, 1–5 (2012)

    Article  CAS  Google Scholar 

  9. Garcia-Cano, J., Gomis, V., Asensi, J.C., Saquete, M.D., Font, A.: Isobaric vapor–liquid-liquid–solid equilibrium of the water + NaCl + 1-butanol system at 101.3 kPa. J. Chem. Thermodyn. 100, 53–59 (2016)

    Article  CAS  Google Scholar 

  10. Ghalami-Choobar, B., Fazli, M., Hasannezhad Sabersalimi, F.: Salt effect on the liquid–liquid equilibrium of (water + diethanolamine + isobutanol/cyclohexanol) systems at T = (298.2 and 308.2) K. J. Mol. Liq. 222, 558–563 (2016)

    Article  CAS  Google Scholar 

  11. Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., Held, C.: Influence of electrolytes on liquid–liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilib. 428, 102–111 (2016)

    Article  CAS  Google Scholar 

  12. Wannachod, T., Hronec, M., Soták, T., Fulajtárová, K., Pancharoen, U., Arpornwichanop, A.: Effects of salt on the LLE and tie-line data for furfuryl alcohol–n-butanol–water at T = 298.15 K. J. Mol. Liq. 218, 50–58 (2016)

    Article  CAS  Google Scholar 

  13. Sander, B., Rasmussen, P., Fredenslund, A.: Calculation of solid–liquid equilibria in aqueous solutions of nitrate salts using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1197–1202 (1986)

    Article  CAS  Google Scholar 

  14. Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72(1), 65–76 (1997)

    Article  CAS  Google Scholar 

  15. Góral, M., Wiśniewska, G.B., Mączyński, A.: Recommended liquid–liquid equilibrium data: part 4 1-alkanol–water systems. J. Phys. Chem. Ref. Data 35, 1391–1414 (2006)

    Article  Google Scholar 

  16. Seidell, A.: Solubilities of Inorganic and Metal Organic Compounds; a Compilation of Quantitative Solubility Data from the Periodical Literature, 2nd edn., pp. 44, 63, 640, 667. D.Van Nostrand Company, New York (1919)

  17. Ghalami-Choobar, B., Ghanadzadeh, A., Kousarimehr, S.: Salt effect on the liquid–liquid equilibrium of (water + propionic acid + cyclohexanol) system at T = (298.2, 303.2, and 308.2) K. Chin. J. Chem. Eng. 19, 565–569 (2011)

    Article  CAS  Google Scholar 

  18. Santos, F.S., Saul, G.D., Martin, A.J.: Salt effect on liquid–liquid equilibrium of water + 1-butanol + acetone system: experimental determination and thermodynamic modeling. Fluid Phase Equilib. 187, 265–274 (2001)

    Article  Google Scholar 

  19. Vakili-Nezhaad, G.R., Mohsen-Nia, M., Taghikhani, V., Behpoor, M., Aghahosseini, M.: Salting-out effect of NaCl and KCl on the ternary LLE data for the systems of (water + propionic acid + isopropyl methyl ketone) and of (water + propionic acid + isobutyl methyl ketone). J. Chem. Thermodyn. 36, 341–348 (2004)

    Article  CAS  Google Scholar 

  20. Bhupesh, C., Roy, M.R., Awual, M., Goto, M.: Effect of inorganic salts on ternary equilibrium data of propionic acid–water–solvents systems. J. Appl. Sci. 7, 1053–1060 (2007)

    Article  Google Scholar 

  21. Marcus, Y.: Ion Properties, 3rd edn, pp. 12–16. Marcel Dekker, New York (1997)

    Google Scholar 

  22. Wang, J., Bao, Z.: Investigation on vapor–liquid equilibrium for 2-propanol + 1-butanol + 1-pentanol at 101.3 kPa. Fluid Phase Equilib. 341, 30–34 (2013)

    Article  CAS  Google Scholar 

  23. Winkelman, J.G.M., Kraai, G.N., Heeres, K.J.: Binary, ternary and quaternary liquid–liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures. Fluid Phase Equilib. 284(2), 71–79 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panarat Rattanaphanee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawong, K., Daengpradab, B. & Rattanaphanee, P. Liquid–Liquid Equilibrium of Water + 1-Butanol + Inorganic Salt Systems at 303.15, 313.15 and 323.15 K: Experiments and Correlation. J Solution Chem 46, 1077–1091 (2017). https://doi.org/10.1007/s10953-017-0619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0619-6

Keywords

Navigation