Skip to main content

Advertisement

Log in

Density and Viscosity of a Ternary \( x_{1} \) 1-Hexene(1) + \( x_{2} \) 1-Octene(2) + (1 − x 1 − x 2) 1-Decene(3) Mixture at High Temperatures and High Pressures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The density and viscosity of a ternary 1-hexene(1) + 1-octene(2) +1-decene(3) mixture (\( w_{1} = w_{2} = w_{3} = 0.333 \) weight fractions or \( x_{1} = 0.4257 \),\( x_{2} = 0.3190 \), \( x_{3} = 0.2553 \) mole fractions of 1-hexene, 1-octene, and 1-decene, respectively) have been simultaneously measured over the temperature range from (298 to 471) K and at pressures up to 196 MPa using a combined method of hydrostatic weighing and falling-body techniques, respectively. The combined expanded uncertainties of the density, pressure, temperature, concentration, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 are estimated to be (0.15 to 0.30)%, 0.05%, 0.02 K, 0.005 mol%, and (1.5 to 2.0)%, respectively. The measured densities and viscosities were used to calculate the excess molar volumes and viscosity differences. The excess molar properties (\( G_{\text{m}}^{\text{E}} , \, H_{\text{m}}^{\text{E}} , \, S_{\text{m}}^{\text{E}} \) and \( C_{\text{pm}}^{\text{E}} \)) and their pressure derivatives as a function of temperature and pressure have been calculated using the derived excess molar volumes. The measured viscosities were used to develop a theoretically based viscosity correlation model (Arrhenius–Andrade type equation) for the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure. J. Chem. Thermodyn. 43, 1824–1843 (2011)

    Article  CAS  Google Scholar 

  2. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 465 K and at high pressures up to 245 MPa. Fluid Phase Equilib. 315, 64–76 (2012)

    Article  CAS  Google Scholar 

  3. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Experimental study of the density and viscosity of n-heptane at temperatures from 298 K to 470 K and pressures up to 245 MPa. Int. J. Thermophys. 34, 1–33 (2013)

    Article  CAS  Google Scholar 

  4. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Experimental study of the density and viscosity of 1-octene and 1-decene at high temperatures and high pressures. High Temp. High Press. 42, 509–536 (2013)

    CAS  Google Scholar 

  5. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Experimental study and correlation models of the density and viscosity of 1-hexene and 1-heptene at temperatures from (298 to 473) K and pressures up to 245 MPa. J. Chem. Eng. Data 59, 1105–1119 (2014)

    Article  CAS  Google Scholar 

  6. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Simultaneous measurements of the density and viscosity of 1-hexene + 1-decene mixtures at high temperatures and high pressures. J. Mol. Liq. 197, 160–170 (2014)

    Article  CAS  Google Scholar 

  7. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Measurements of the density and viscosity of 1-hexene + 1-octene mixture at high temperatures and high pressures. Thermochim. Acta 592, 73–85 (2014)

    Article  CAS  Google Scholar 

  8. Sagdeev, D.I., Fomina, M.G., Mukhamedzyanov, GKh, Abdulagatov, I.M.: Density and viscosity of 1-octene + 1-decene mixture at high temperatures and high pressures. High Temp. High Press. 45, 119–143 (2016)

    Google Scholar 

  9. Frenkel, M., Chirico, R., Diky, V., Muzny, C.D., Kazakov, A.F., Magee, J.W., Abdulagatov, I.M., Jeong W.K.: NIST Thermo Data Engine, NIST Standard Reference Database 103b–Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0, National Institute Standards and Technology, Boulder, Colorado-Gaithersburg, MD, (2010)

  10. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 9.0, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, (2010)

  11. Michailidou, E.K., Assael, M.J., Huber, M.L., Perkins, R.A.: Reference correlation of the viscosity of n-hexane from the triple point to 600 K and up to 500 MPa. J. Phys. Chem. Ref. Data 42, 033102-1–033102-12 (2013)

  12. Michailidou, E.K., Assael, M.J., Huber, M.L., Abdulagatov, I.M., Perkins, R.A.: Reference correlation of the viscosity of n-heptane from the triple point to 600 K and up to 248 MPa. J. Phys. Chem. Ref. Data 43, 023103-1–023103-13 (2014)

  13. Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworths Sci, London (1982)

    Google Scholar 

  14. Prausnitz, J.M.: Molecular Thermodynamics of Fluids—Phase Equilibria. Prentice Hall, Englewood Cliffs (1969)

    Google Scholar 

  15. Prigogine, I.: The Molecular Theory of Solutions. North-Holland Co., Interscience Inc., New York (1957)

  16. Patil, P.P., Patil, S.R., Borse, A.U., Hundiwale, D.G.: Density, excess molar volume and apparent molar volume of binary liquid mixture. Rasayan J. Chem. 4, 599–604 (2011)

    CAS  Google Scholar 

  17. Bernal-Garcia, J.M., Guzman-Lopez, J.A., Cabrales-Torres, A., Rico-Ramires, V., Iglesias-Silva, G.A.: Supplementary densities and viscosities of aqueous solutions of diethylene glycol from (283.15 to 353.15) K. J. Chem. Eng. Data 53, 1028–1031 (2008)

    Article  CAS  Google Scholar 

  18. Hall, C.A., Le, K.A., Rudaz, C., Radhi, A., Lovell, C.S., Damion, R.A., Budtova, T., Ries, M.E.: Macoscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J. Phys. Chem. B 116, 12810–12818 (2012)

    Article  CAS  Google Scholar 

  19. Gisser, D.J., Ediger, M.D.: Modification of solvent rotational dynamics by the addition of small molecules or polymers. J. Phys. Chem. 97, 10818–10823 (1993)

    Article  CAS  Google Scholar 

  20. Zhang, L., Guo, Y., Wei, H., Yang, F., Fang, W., Lin, R.: Densities and viscosities of binary mixtures of exo-tetrahydrodicyclopentadiene with n-undecane or n-tetradecane at T = (293.15 to 313.15) K. J. Chem. Eng. Data 55, 4108–4113 (2010)

    Article  CAS  Google Scholar 

  21. Macias-Salinas, R., Garcia-Sanchez, F., Eliosa-Jimenez, G.: An equation-of-state-based model for non-ideal liquid mixtures. Fluid Phase Equilib. 210, 319–334 (2003)

    Article  CAS  Google Scholar 

  22. Oswal, S.L., Dave, J.P.: Viscosities of nonelectrolyte liquid mixtures. II. Binary mixtures of n-hexane with alkanoates and bromoalkanoates. Int. J. Thermophys. 13, 943–955 (1992)

    Article  CAS  Google Scholar 

  23. Kumagai, A., Tomida, D., Yokoyama, C.: Measurements of the liquid viscosities of mixtures of n-butane, n-hexane, and n-octane with squalane to 30 MPa. Int. J. Thermophys. 27, 376–393 (2006)

    Article  CAS  Google Scholar 

  24. McAllister, R.A.: The viscosity of liquid mixtures. AIChE J. 6, 427–431 (1960)

    Article  CAS  Google Scholar 

  25. Powell, R.E., Roseveare, W.E., Eyring, H.: Diffusion, thermal conductivity, and viscosity of liquids. Ind. Eng. Chem. 33, 430–435 (1941)

    Article  CAS  Google Scholar 

  26. Glasstone, S., Laidler, K., Eyring, E.: Theory of Rate Processes. McGraw–Hill, New York (1941)

    Google Scholar 

  27. Stokes, R.H., Mills, R.: Viscosity of Electrolytes and Related Properties. Pergamon Press, New York (1965)

    Google Scholar 

  28. Erday-Gruz, T.: Transport Phenomena in Aqueous Solutions. Wiley, New York (1974)

    Google Scholar 

  29. Abdulagatov, I.M., Azizov, N.D.: Densities, apparent molar volumes, and viscosities of concentrated aqueous NaNO3 solutions at temperatures from 298 to 607 K and at pressures up to 30 MPa. J. Solution Chem. 34, 645–685 (2005)

    Article  CAS  Google Scholar 

  30. Abdulagatov, I.M., Azizov, N.D.: Viscosity of aqueous calcium chloride solutions at high temperatures and high pressures. Fluid Phase Equilib. 240, 204–219 (2006)

    Article  CAS  Google Scholar 

  31. Abdulagatov, I.M., Azizov, N.D.: Viscosity of aqueous LiI solutions at 293–525 K and 0.1–40 MPa. Thermochim. Acta 439, 8–20 (2005)

    Article  CAS  Google Scholar 

  32. Abdulagatov, I.M., Zeinalova, A.B., Azizov, N.D.: Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol·kg−1. J. Chem. Thermodyn. 38, 179–189 (2006)

    Article  CAS  Google Scholar 

  33. Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Bao, O., Yokoyama, C.: Viscosity and thermal conductivity of 1-hexyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate at pressures up to 20 MPa. Int. J. Thermophys. 33, 959–969 (2012)

    Article  CAS  Google Scholar 

  34. Grimes, C.E., Kestin, J., Khalifa, H.E.: Viscosity of aqueous KCl solutions in the temperature range 25–150 °C and the pressure range 0–30 MPa. J. Chem. Eng. Data 24, 121–126 (1979)

    Article  CAS  Google Scholar 

  35. Kestin, J., Shankland, I.R.: Viscosity of aqueous NaCl solutions in the temperature range 25–200 °C and in the pressure range 0.1–30 MPa. Int. J. Thermophys. 5, 241–263 (1998)

    Article  Google Scholar 

  36. Schmidt, H., Stephan, M., Safarov, J., Kul, I., Nocke, J., Abdulagatov, I.M., Hassel, E.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethyl sulfate. J. Chem. Thermodyn. 47, 68–75 (2012)

    Article  CAS  Google Scholar 

  37. Redhi, G.G.: Thermodynamics of liquid mixtures containing carboxylic acids. PhD thesis, UKZN, Durban (2003)

  38. Deenadayalu, N.: Thermodynamic properties of nonelectrolyte mixtures containing quinoline or 1,3 dimethyl-2-imidazolidinone. PhD thesis, UKZN, Durban (2002)

  39. Maham, Y., Liew, C.N., Mather, A.E.: Viscosities and excess properties of aqueous solutions of ethanolamines from 25 to 80º. J. Solution Chem. 31, 743–756 (2002)

    Article  CAS  Google Scholar 

  40. Li, J., Mundhwa, M., Tontiwachwuthikul, P., Henni, A.: Volumetric properties, viscosities, and refractive indices for aqueous 2-(methylamino)ethanol solutions from (298.15 to 343.15) K. J. Chem. Eng. Data 52, 560–565 (2007)

    Article  CAS  Google Scholar 

  41. Gonzalez, B., Domiguez, A., Tojo, J.: Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J. Chem. Eng. Data 51, 2096–2102 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagdeev, D.I., Fomina, M.G. & Abdulagatov, I.M. Density and Viscosity of a Ternary \( x_{1} \) 1-Hexene(1) + \( x_{2} \) 1-Octene(2) + (1 − x 1 − x 2) 1-Decene(3) Mixture at High Temperatures and High Pressures. J Solution Chem 46, 966–988 (2017). https://doi.org/10.1007/s10953-017-0617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0617-8

Keywords

Navigation