Skip to main content
Log in

Thermal Aggregation of Bovine Serum Albumin in Conventional Buffers: An Insight into Molecular Level Interactions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have studied the effect of some conventional buffers, which are used frequently for biological research, on the thermal aggregation behavior of bovine serum albumin (BSA). The aggregation kinetics of BSA in buffer solutions were investigated by using UV–Vis spectroscopy. The buffers include sodium phosphate buffer, TRIS buffer and imidazole buffer at physiological pH (7.4). Dynamic light scattering and scanning electron microscopy have been employed to illustrate the size and morphology of protein aggregates. The molecular level interactions of buffer molecules with BSA was probed by various spectroscopic techniques, including UV–Vis, fluorescence, and circular dichroism. The results of this study reveal that the strong interactions of the buffers with protein’s folded/unfolded structures lead to stabilization/destabilization of BSA. We have also explored the possible binding sites of BSA for these buffers using a molecular docking technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dill, K.A.: Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)

    Article  CAS  Google Scholar 

  2. Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., Singh, R.M.M.: Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966)

    Article  CAS  Google Scholar 

  3. Durst, R.A., Staples, B.R.: Tris/Tris·HCl: a standard buffer for use in the physiologic pH range. Clin. Chem. 18, 206–208 (1972)

    CAS  Google Scholar 

  4. Irvin, R.T., MacAlister, T.J., Costerton, J.W.: Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. J. Bacteriol. 145, 1397–1403 (1981)

    CAS  Google Scholar 

  5. Martin, N.C., Pirie, A.A., Ford, L.V., Callaghan, C.L., McTurk, K., Lucy, D., Scrimger, D.G.: The use of phosphate buffered saline for the recovery of cells and spermatozoa from swabs. Sci. Justice 46, 179–184 (2006)

    Article  CAS  Google Scholar 

  6. Mertz, E.T., Owen, C.A.: Imidazole buffer its use in blood clotting studies. Exp. Biol. Med. 43, 204–205 (1940)

    Article  CAS  Google Scholar 

  7. Molina, F., Rueda, A., Bosque-Sendra, J.M., Megias, L.: Determination of proteins in the presence of imidazole buffers. J. Pharm. Biomed. Anal. 14, 273–280 (1996)

    Article  CAS  Google Scholar 

  8. Nahas, G.G.: The pharmacology of tris(hydroxymethyl) aminomethane (THAM). Pharmacol. Rev. 14, 447–472 (1962)

    CAS  Google Scholar 

  9. Bujacz, A.: Structures of bovine, equine and leporine serum albumin. Acta Crystal. Sect. D 68, 1278–1289 (2012)

    Article  CAS  Google Scholar 

  10. Peters, J.T.: All about Albumin Biochemistry, Genetics and Medical Applications. Academic Press, San Diego (1996)

    Google Scholar 

  11. Peters, J.T.: Advances in Protein Chemistry, vol. 37, p. 161. Academic Press, New York (1985)

    Google Scholar 

  12. Huffman, L.M.: Processing whey protein for use as a food ingredient. Food Technol. 50, 49–52 (1996)

    CAS  Google Scholar 

  13. Kinsella, J.E., Whitehead, D.M.: Proteins in whey: chemical, physical and functional properties. Adv. Food Nutr. Res. 33, 343–438 (1989)

    Article  CAS  Google Scholar 

  14. Phillips, L.G., Whitehead, D.M., Kinsella, J.E.: Structure Function Properties of Food Proteins. Academic Press, San Diego (1994)

    Google Scholar 

  15. Trott, O., Olson, A.J.: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010)

    CAS  Google Scholar 

  16. Fandrich, M., Forge, V., Buder, K., Kittler, M., Dobson, C.M., Diekmann, S.: Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Nat. Acad. Sci. USA 100, 15463–15468 (2003)

    Article  Google Scholar 

  17. Hamada, D., Dobson, C.M.: A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 11, 2417–2426 (2002)

    Article  CAS  Google Scholar 

  18. Holm, N.K., Jespersen, S.K., Thomassen, L.V., Wolff, T.Y., Sehgal, P., Thomsen, L.A., Christiansen, G., Andersen, C.B., Knudsen, A.D., Otzen, D.E.: Aggregation and fibrillation of bovine serum albumin. Biochim. Biophys. Acta 1774, 1128–1138 (2007)

    Article  CAS  Google Scholar 

  19. Stirpe, A., Rizzuti, B., Pantusa, M., Bartucci, R., Sportelli, L., Guzzi, R.: Thermally induced denaturation and aggregation of BLG-A: effect of the Cu2+ and Zn2+ metal ions. Eur. Biophys. J. 37, 1351–1360 (2008)

    Article  CAS  Google Scholar 

  20. Juárez, J., Taboada, P., Mosquera, V.: Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophys. J. 96, 2353–2370 (2009)

    Article  Google Scholar 

  21. Pandey, N.K., Ghosh, S., Dasgupta, S.: Fibrillation in human serum albumin is enhanced in the presence of copper(II). J. Phys. Chem. B 114, 10228–10233 (2010)

    Article  CAS  Google Scholar 

  22. Chaturvedi, S.K., Ahmad, E., Khan, J.M., Alam, P., Ishtikhar, M., Khan, R.H.: Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol. Biosyst. 11, 307–316 (2015)

    Article  CAS  Google Scholar 

  23. Gupta, B.S., Taha, M., Lee, M.J.: Interactions of bovine serum albumin with biological buffers, TES, TAPS, and TAPSO in aqueous solutions. Process Biochem. 48, 1686–1696 (2013)

    Article  CAS  Google Scholar 

  24. Taha, M., Gupta, B.S., Khoiroh, I., Lee, M.-J.: Interactions of biological buffers with macromolecules: the ubiquitous “smart” polymer PNIPAM and the biological buffers MES, MOPS, and MOPSO. Macromolecules 44, 8575–8589 (2011)

    Article  CAS  Google Scholar 

  25. Satish, L., Rana, S., Arakha, M., Rout, L., Ekka, B., Jha, S., Dash, P., Sahoo, H.: Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme. Spectrosc. Lett. 49, 383–390 (2016)

    Article  CAS  Google Scholar 

  26. Millan, S., Satish, L., Kesh, S., Chaudhary, Y.S., Sahoo, H.: Interaction of lysozyme with rhodamine B: a combined analysis of spectroscopic and molecular docking. J. Photochem. Photobiol. B 162, 248–257 (2016)

    Article  CAS  Google Scholar 

  27. Miller, J.N.: Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 16, 203–208 (1979)

    CAS  Google Scholar 

  28. Haq, S.K., Khan, R.H.: Spectroscopic analysis of thermal denaturation of Cajanus cajan proteinase inhibitor at neutral and acidic pH by circular dichroism. Int. J. Biol. Macromol. 35, 111–116 (2005)

    Article  CAS  Google Scholar 

  29. Shu, Y., Liu, M., Chen, S., Chen, X., Wang, J.: New insight into molecular interactions of imidazolium ionic liquids with bovine serum albumin. J. Phys. Chem. B 115, 12306–12314 (2011)

    Article  CAS  Google Scholar 

  30. Chatterjee, T., Pal, A., Dey, S., Chatterjee, B.K., Chakrabarti, P.: Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS ONE 7, e37468 (2012)

    Article  CAS  Google Scholar 

  31. Dockal, M., Carter, D.C., Ruker, F.: Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J. Biol. Chem. 275, 3042–3050 (2000)

    Article  CAS  Google Scholar 

  32. Sun, C., Yang, J., Wu, X., Huang, X., Wang, F., Liu, S.: Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophys. J. 88, 3518–3524 (2005)

    Article  CAS  Google Scholar 

  33. Attri, P., Jha, I., Choi, E.H., Venkatesu, P.: Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. Int. J. Biol. Macromol. 69, 114–123 (2014)

    Article  CAS  Google Scholar 

  34. Attri, P., Venkatesu, P.: Exploring the thermal stability of alpha-chymotrypsin in protic ionic liquids. Process Biochem. 48, 462–470 (2013)

    Article  CAS  Google Scholar 

  35. Satish, L., Millan, S., Sahoo, H.: Spectroscopic insight into the interaction of bovine serum albumin with imidazolium-based ionic liquids in aqueous solution. Luminescence (2016). doi:10.1002/bio.3239

    Google Scholar 

Download references

Acknowledgements

Ministry MHRD, New Delhi is highly acknowledged for financial support and the authors are acknowledging the Department of Chemistry (NIT Rourkela) for extending their support in terms of the facility to carry out the experiments. Authors are exceptionally thankful to Ms. A. Baral from IMMT, Bhubaneswar for her assistance in carrying out scanning electron microscope (SEM) analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harekrushna Sahoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satish, L., Millan, S., Das, S. et al. Thermal Aggregation of Bovine Serum Albumin in Conventional Buffers: An Insight into Molecular Level Interactions. J Solution Chem 46, 831–848 (2017). https://doi.org/10.1007/s10953-017-0612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0612-0

Keywords

Navigation