Skip to main content
Log in

Interactions of Sodium Polystyrene Sulfonate with 1-Octyl-3-methylimidazolium Bromide in Aqueous Solution: Conductometric, Spectroscopic and Density Functional Theory Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivity measurements were performed for aqueous mixtures of sodium polystyrene sulfonate (NaPSS) and 1-octyl-3-methylimidazolium bromide ([OMIm]Br) at 288.15, 298.15 and 308.15 K. Scaling theory is used for the description of the electrical conductance of the polyelectrolytes. The results indicate that the fraction of uncondensed counterions is decreased by increasing the temperature or concentration of [OMIm]Br. Conductivity measurements for 1-octyl-3-methylimidazolium bromide were performed in aqueous solutions of sodium polystyrene sulfonate. Data analysis was performed using the Quint–Viallard conductivity equation and the low concentration chemical model. Limiting molar conductivities of [OMIm]Br (Λ 0) and the association constant (K A) were determined. The molar conductivity of [OMIm]Br in aqueous solutions of NaPSS increased with increasing temperature. Values of activation energy for viscous flow are higher than the values of activation enthalpy of charge transport; therefore, it can be concluded that, in addition to ion transfer, the formation and breaking of hydrogen bonds is responsible for a portion of the charge transfer. The results of UV–Vis spectroscopic and quantum chemical calculations confirmed the existence of hydrogen bonding between [OMIm]+ and [PSS].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, P., Anderko, A.: Modeling chemical equilibria, phase behavior, and transport properties in ionic liquid systems. Fluid Phase Equilib. 302, 74–82 (2010)

    Article  Google Scholar 

  2. Bahadur, I., Momin, M.I.K., Koorbanally, N.A., Sattari, M., Ebenso, E.E., Katata-Seru, L.M., Singh, S., Ramjugernath, D.: Interactions of polyvinylpyrrolidone with imidazolium based ionic liquids: spectroscopic and density functional theory studies. J. Mol. Liq. 213, 13–16 (2016)

    Article  CAS  Google Scholar 

  3. Döker, M., Gmehling, J.: Measurement and prediction of vapor–liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilib. 227, 255–266 (2005)

    Article  Google Scholar 

  4. Kato, R., Krummen, M., Gmehling, J.: Measurement and correlation of vapor–liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons. Fluid Phase Equilib. 224, 47–54 (2004)

    Article  CAS  Google Scholar 

  5. Santiago, R.S., Santos, G.R., Aznar, M.: UNIQUAC correlation of liquid–liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach. Part II. Fluid Phase Equilib. 293, 66–72 (2010)

    Article  CAS  Google Scholar 

  6. Bešter-Rogač, M., Hunger, J., Stoppa, A., Buchner, R.: 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. J. Chem. Eng. Data 56, 1261–1267 (2011)

    Article  Google Scholar 

  7. Bešter-Rogač, M., Stoppa, A., Hunger, J., Hefter, G., Buchner, R.: Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. Phys. Chem. Chem. Phys. 13, 17588–17598 (2011)

    Article  Google Scholar 

  8. De Gennes, P.G., Pincus, P., Velasco, R.M., Brochard, F.: Remarks on polyelectrolyte conformation. J. Phys. 37, 1461–1473 (1976)

    Article  Google Scholar 

  9. Barrat, J.L., Joanny, J.F.: Theory of polyelectrolyte solutions. Adv. Chem. Phys. 94, 1–66 (1996)

    CAS  Google Scholar 

  10. Dobrynin, A.V., Rubinstein, M.: Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005)

    Article  CAS  Google Scholar 

  11. Manning, G.S., Ray, J.: Counterion condensation revisited. J. Biomol. Struct. Dyn. 16, 461–476 (1998)

    Article  CAS  Google Scholar 

  12. Pal, A., Yadav, S.: Binding interaction between 1-octyl-3-methylimidazolium bromide and sodium polystyrene sulfonate in aqueous solution. Fluid Phase Equilib. 412, 71–78 (2016)

    Article  CAS  Google Scholar 

  13. Bončina, M., BešterRogač, M.: Global thermodynamic analysis of conductivity data. Acta Chim. Slov. 59, 536–541 (2012)

    Google Scholar 

  14. Sharma, R., Das, C., Dahal, S., Das, B.: Polyion–counterion interactions in sodium carboxymethylcellulose–ethylene glycol–water ternary solutions. Carbohydr. Polym. 92, 1546–1554 (2013)

    Article  CAS  Google Scholar 

  15. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions: Modern Aspects. Springer, Berlin (1998)

    Google Scholar 

  16. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  17. Pei, Y., Wang, J., Liu, L., Wu, K., Zhao, Y.: Liquid–liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J. Chem. Eng. Data 52, 2026–2031 (2007)

    Article  CAS  Google Scholar 

  18. Yang, J.-Z., Tong, J., Li, J.-B.: Study of the volumetric properties of the aqueous ionic liquid 1-methyl-3-pentylimidazolium tetrafluoroborate. J. Solution Chem. 36, 573–582 (2007)

    Article  Google Scholar 

  19. Mehrdad, A., Shekaari, H., Niknam, Z.: Viscometric studies of interactions between ionic liquid 1-octyl-3-methyl-imidazolium bromide and polyvinyl pyrrolidone in aqueous solutions. J. Chem. Thermodyn. 79, 1–7 (2014)

    Article  CAS  Google Scholar 

  20. Yu, M., Li, S.M., Li, X.Y., Zhang, B.J., Wang, J.J.: Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol. Environ. Saf. 71, 903–908 (2008)

    Article  CAS  Google Scholar 

  21. Stark, A., Ott, D., Kralisch, D., Kreisel, G., Ondruschka, B.: Ionic liquids and green chemistry: a lab experiment. J. Chem. Educ. 87, 196–201 (2010)

    Article  CAS  Google Scholar 

  22. Mou, Z., Li, P., Bu, Y., Wang, W., Shi, J., Song, R.: Investigations of coupling characters in ionic liquids formed between the 1-ethyl-3-methylimidazolium cation and the glycine anion. J. Phys. Chem. B 112, 5088–5097 (2008)

    Article  CAS  Google Scholar 

  23. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Laham, A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03. Revision B.03. Gaussian, Inc., Pittsburgh (2003)

    Google Scholar 

  24. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  25. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  26. Bulat, F.A., Toro-Labbé, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16, 1679–1691 (2010)

    Article  CAS  Google Scholar 

  27. Biegler Konig, F.W., Schonbohm, J., Bayles, D.: Software news and updates AIM2000. J. Comput. Chem. 22, 545–559 (2001)

    Article  Google Scholar 

  28. Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F.: NBO 3.0 program manual. Gaussian Inc, Pittsburgh (1995)

    Google Scholar 

  29. Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969)

    Article  CAS  Google Scholar 

  30. Manning, G.S.: Limiting law for the conductance of the rod model of a salt-free polyelectrolyte solution. J. Phys. Chem. 79, 262–265 (1975)

    Article  CAS  Google Scholar 

  31. Manning, G.S.: The critical onset of counterion condensation: A survey of its experimental and theoretical basis. Ber. Bunsenges. Phys. Chem. 100, 909–922 (1996)

    Article  CAS  Google Scholar 

  32. Bhattarai, A., Nandi, P., Das, B.: The effects of concentration, relative permittivity and temperature on the transport properties of sodium polystyrenesulphonate in methanol–water mixed solvent media. J. Polym. Res. 13, 475–482 (2006)

    Article  CAS  Google Scholar 

  33. Ghosh, D., Bhattarai, A., Das, B.: Electrical conductivity of sodium polystyrenesulfonate in acetonitrile–water-mixed solvent media: experiment and data analysis using the Manning counterion condensation model and the scaling theory approach. Colloid Polym. Sci. 287, 1005–1011 (2009)

    Article  CAS  Google Scholar 

  34. Colby, R.H., Boris, D.C., Krause, W.E., Tan, J.S.: Polyelectrolyte conductivity. J. Polym. Sci. B. Polym. Phys. 35, 2951–2960 (1997)

    Article  CAS  Google Scholar 

  35. Bešter-Rogač, M., Hunger, J., Stoppa, A., Buchner, R.: Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO. J. Chem. Eng. Data 55, 1799–1803 (2009)

    Google Scholar 

  36. Bončina, M., Apelblat, A., Barthel, J., Bešter-Rogač, M.: Investigation of the dissociation and dimerization of cyclamic acid in aqueous solutions by means of a conductometric method. J. Solution Chem. 37, 1561–1574 (2008)

    Article  Google Scholar 

  37. Bešter-Rogač, M., Stoppa, A., Buchner, R.: Ion association of imidazolium ionic liquids in acetonitrile. J. Phys. Chem. B 118, 1426–1435 (2014)

    Article  Google Scholar 

  38. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  39. Apelblat, A.: Representation of electrical conductances for polyvalent electrolytes by the Quint-Viallard conductivity equation. Part 4. Symmetrical 2:2, 3:3 and unsymmetrical 2:1, 3:1 and 1:3 type electrolytes in pure organic solvents. J. Solution Chem. 40, 1234–1257 (2011)

    Article  CAS  Google Scholar 

  40. Apelblat, A., Neueder, R., Barthel, J.: Electrolyte data collection: Electrolyte conductivities, ionic conductivities and dissociation constants of aqueous solutions of organic monobasic acids: C8H5NO2–C14H12O3. Dechema 1, 503 (2005)

    Google Scholar 

  41. Malmberg, C.G., Maryott, A.A.: Dielectric constant of water from 0° to 100°. C. J. Res. Nat. Bureau Stand. 56, 1–8 (1956)

    Article  CAS  Google Scholar 

  42. Skekaari, H., Kazempour, A.: Effect of ionic liquid, 1-octyl-3-methylimidazolium bromide on the thermophysical properties of aqueous d-glucose solutions at 298.15 K. Fluid Phase Equilib. 309, 1–7 (2011)

    Article  Google Scholar 

  43. Skekaari, H., Zafarani-Moattar, M.T., Ghaffari, F.: Volumetric, acoustic and conductometric studies of acetaminophen in aqueous ionic liquid, 1-octyl-3-methylimidazolium bromide at T = 293.15–308.15 K. Phys. Chem. Res. 4, 119–141 (2016)

    Google Scholar 

  44. Shaw, H.R.: Viscosities of magmatic silicate liquids; an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)

    Article  CAS  Google Scholar 

  45. Krupenie, P.H., Benesch, W.: Electronic transition moment Integrals for first ionization of CO and the AX transition in CO+. Some limitations on the use of the r-centroid approximation. J. Res. Natl. Bur. Stand. A 72A, 495–503 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mehrdad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrdad, A., Parvini, E. Interactions of Sodium Polystyrene Sulfonate with 1-Octyl-3-methylimidazolium Bromide in Aqueous Solution: Conductometric, Spectroscopic and Density Functional Theory Studies. J Solution Chem 46, 908–930 (2017). https://doi.org/10.1007/s10953-017-0608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0608-9

Keywords

Navigation