Abstract
Sound speeds have been measured for aqueous solutions of the nucleosides adenosine, cytidine, and uridine at T = (288.15 and 313.15) K and at ambient pressure. The partial molar isentropic compressions at infinite dilution, \( K_{S,2}^{\text{o}} \), were derived from the speed of sound data. The partial molar heat capacities at infinite dilution, \( C_{p,2}^{\text{o}} \), for the three nucleosides at T = (288.15 and 313.15) K were also determined. These \( K_{S,2}^{\text{o}} \) and \( C_{p,2}^{\text{o}} \) results, along with partial molar isobaric expansions at infinite dilution, \( E_{2}^{\text{o}} = \, (\partial V_{2}^{\text{o}} /\partial T)_{p} \), that were derived using data from the literature, were used to evaluate the partial molar isothermal compressions at infinite dilution, \( K_{T,2}^{\text{o}} \{ K_{T,2}^{\text{o}} = - \, (\partial V_{2}^{\text{o}} /\partial p)_{T} \} \), for the nucleosides. The \( K_{T,2}^{\text{o}} \) results were rationalized in terms of nucleoside hydration and its temperature dependence.
Similar content being viewed by others
References
Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T = 298.15 K and p = (10 to 120 MPa). J. Chem. Thermodyn. 61, 117–125 (2013)
Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties at high pressures of the nucleosides inosine, 2′-deoxyinosine, and 2′-deoxyguanosine and the volumetric properties of guanosine derived using group additivity methods. J. Chem. Eng. Data 59, 3593–3604 (2014)
Robertson, M.P., Joyce, G.F.: The origins of the RNA world. Cold Spring Harbor Perspect. Biol 4, a003608 (2012)
Dworkin, J.P., Lazcano, A., Miller, S.L.: The roads to and from the RNA world. J. Theor. Biol. 222, 127–134 (2003)
Bartel, D.P., Unrau, P.J.: Constructing an RNA world. Trends Cell Biol. 9, M9–M13 (1999)
Cech, T.R.: The RNA worlds in context. Cold Spring Harbor Perspect. Biol. 4, a006742 (2012)
Hedwig, G.R., Jameson, G.B., Høiland, H.: Manuscript in preparation
Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008)
Patel, S.G., Kishore, N.: Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55 °C. J. Solution Chem. 24, 25–38 (1995)
Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001)
Dyke, B.P., Hedwig, G.R.: The partial molar volumes at T = (288.15 to 313.15) K, and the partial molar heat capacities and expansions at T = 298.15 K of cytidine, uridine and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957–965 (2008)
Hedwig, G.R., Jameson, G.B.: Volumetric interaction coefficients for some nucleosides in aqueous solution at T = 298.15 K. J. Chem. Thermodyn. 59, 188–194 (2013)
Høgseth, E., Hedwig, G., Høiland, H.: Rubidium clock sound velocity meter. Rev. Sci. Instrum. 71, 4679–4680 (2000)
Horvat-Szabo, G., Høgseth, E., Høiland, H.: An automated apparatus for ultrasound velocity measurements improving the pulse-echo-overlap method to a precision better than 0.5 ppm in liquids. Rev. Sci. Instrum. 65, 1644–1648 (1994)
Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)
Reading, J.F., Hedwig, G.R.: Thermodynamic properties of peptide solutions. Part 6. The amino acid side-chain contributions to the partial molar volumes and heat capacities of some tripeptides in aqueous solution. J. Chem. Soc. Faraday Trans. 86, 3117–3123 (1990)
Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988)
Povey, M.J.W.: Ultrasonic Techniques for Fluids Characterization, p. 26. Academic Press, London (1997)
Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)
Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, Chap. 8, 3rd edn. Reinhold, New York (1958)
Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001)
Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)
Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill, New York (1969)
Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions: 7. Partial molar isentropic pressure coefficients of some dipeptides in aqueous solution. J. Solution Chem. 20, 1113–1127 (1991)
Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978)
Sakurai, M., Nakamura, K., Nitta, K., Takenaka, N.: Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data 40, 301–310 (1995)
Hedwig, G.R., Høiland, H.: Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J. Chem. Eng. Data 56, 2266–2272 (2011)
Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)
Häckel, M., Hinz, H.-J., Hedwig, G.R.: Additivity of the partial molar heat capacities of the amino acid side-chains of small peptides: implications for unfolded proteins. Phys. Chem. Chem. Phys. 2, 5463–5468 (2000)
Liu, J.L., Hakin, A.W., Hedwig, G.R.: Partial molar volumes and heat capacities of the N-acetyl amide derivatives of the amino acids asparagine, glutamine, tyrosine, and lysine monohydrochloride in aqueous solution at temperatures from T = 288.15 K to T = 328.15 K. J. Chem. Thermodyn. 38, 1640–1650 (2006)
Swenson, D.M., Blodgett, M.B., Ziemer, S.P., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane, and 1,2-dimethoxyethane at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 40, 248–259 (2008)
Desnoyers, J.E., Philip, P.R.: Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096 (1972)
Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)
Hedwig, G.R.: Thermodynamic properties of peptide solutions 19. Partial molar isothermal compressions at T = 298.15 K of some peptides of sequence gly-X-gly in aqueous solution. J. Chem. Thermodyn. 42, 208–212 (2010)
Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18–55 °C. Biopolymers 34, 541–553 (1994)
Taulier, N., Chalikian, T.V.: Compressibility of protein transitions. Biochim. Biophys. Acta 1595, 48–70 (2002)
Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989)
Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)
Acknowledgements
We thank Inger Johanne Fjellanger for her assistance with some of the speed of sound measurements and Einar Høgseth for his technical expertise in the maintenance of the speed of sound equipment.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hedwig, G.R., Høiland, H. The Partial Molar Isothermal Compressions of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K. J Solution Chem 46, 849–861 (2017). https://doi.org/10.1007/s10953-017-0606-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0606-y