Skip to main content
Log in

The Partial Molar Isothermal Compressions of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Sound speeds have been measured for aqueous solutions of the nucleosides adenosine, cytidine, and uridine at T = (288.15 and 313.15) K and at ambient pressure. The partial molar isentropic compressions at infinite dilution, \( K_{S,2}^{\text{o}} \), were derived from the speed of sound data. The partial molar heat capacities at infinite dilution, \( C_{p,2}^{\text{o}} \), for the three nucleosides at T = (288.15 and 313.15) K were also determined. These \( K_{S,2}^{\text{o}} \) and \( C_{p,2}^{\text{o}} \) results, along with partial molar isobaric expansions at infinite dilution, \( E_{2}^{\text{o}} = \, (\partial V_{2}^{\text{o}} /\partial T)_{p} \), that were derived using data from the literature, were used to evaluate the partial molar isothermal compressions at infinite dilution, \( K_{T,2}^{\text{o}} \{ K_{T,2}^{\text{o}} = - \, (\partial V_{2}^{\text{o}} /\partial p)_{T} \} \), for the nucleosides. The \( K_{T,2}^{\text{o}} \) results were rationalized in terms of nucleoside hydration and its temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T = 298.15 K and p = (10 to 120 MPa). J. Chem. Thermodyn. 61, 117–125 (2013)

    Article  CAS  Google Scholar 

  2. Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties at high pressures of the nucleosides inosine, 2′-deoxyinosine, and 2′-deoxyguanosine and the volumetric properties of guanosine derived using group additivity methods. J. Chem. Eng. Data 59, 3593–3604 (2014)

    Article  CAS  Google Scholar 

  3. Robertson, M.P., Joyce, G.F.: The origins of the RNA world. Cold Spring Harbor Perspect. Biol 4, a003608 (2012)

    Article  Google Scholar 

  4. Dworkin, J.P., Lazcano, A., Miller, S.L.: The roads to and from the RNA world. J. Theor. Biol. 222, 127–134 (2003)

    Article  CAS  Google Scholar 

  5. Bartel, D.P., Unrau, P.J.: Constructing an RNA world. Trends Cell Biol. 9, M9–M13 (1999)

    Article  CAS  Google Scholar 

  6. Cech, T.R.: The RNA worlds in context. Cold Spring Harbor Perspect. Biol. 4, a006742 (2012)

    Article  Google Scholar 

  7. Hedwig, G.R., Jameson, G.B., Høiland, H.: Manuscript in preparation

  8. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008)

    Article  CAS  Google Scholar 

  9. Patel, S.G., Kishore, N.: Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55 °C. J. Solution Chem. 24, 25–38 (1995)

    Article  CAS  Google Scholar 

  10. Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001)

    Article  CAS  Google Scholar 

  11. Dyke, B.P., Hedwig, G.R.: The partial molar volumes at T = (288.15 to 313.15) K, and the partial molar heat capacities and expansions at T = 298.15 K of cytidine, uridine and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957–965 (2008)

    Article  CAS  Google Scholar 

  12. Hedwig, G.R., Jameson, G.B.: Volumetric interaction coefficients for some nucleosides in aqueous solution at T = 298.15 K. J. Chem. Thermodyn. 59, 188–194 (2013)

    Article  CAS  Google Scholar 

  13. Høgseth, E., Hedwig, G., Høiland, H.: Rubidium clock sound velocity meter. Rev. Sci. Instrum. 71, 4679–4680 (2000)

    Article  Google Scholar 

  14. Horvat-Szabo, G., Høgseth, E., Høiland, H.: An automated apparatus for ultrasound velocity measurements improving the pulse-echo-overlap method to a precision better than 0.5 ppm in liquids. Rev. Sci. Instrum. 65, 1644–1648 (1994)

    Article  Google Scholar 

  15. Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

    Article  CAS  Google Scholar 

  16. Reading, J.F., Hedwig, G.R.: Thermodynamic properties of peptide solutions. Part 6. The amino acid side-chain contributions to the partial molar volumes and heat capacities of some tripeptides in aqueous solution. J. Chem. Soc. Faraday Trans. 86, 3117–3123 (1990)

    Article  CAS  Google Scholar 

  17. Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988)

    Article  CAS  Google Scholar 

  18. Povey, M.J.W.: Ultrasonic Techniques for Fluids Characterization, p. 26. Academic Press, London (1997)

    Google Scholar 

  19. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  CAS  Google Scholar 

  20. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, Chap. 8, 3rd edn. Reinhold, New York (1958)

    Google Scholar 

  21. Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001)

    Article  CAS  Google Scholar 

  22. Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)

    Article  Google Scholar 

  23. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill, New York (1969)

    Google Scholar 

  24. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions: 7. Partial molar isentropic pressure coefficients of some dipeptides in aqueous solution. J. Solution Chem. 20, 1113–1127 (1991)

    Article  CAS  Google Scholar 

  25. Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978)

    Article  CAS  Google Scholar 

  26. Sakurai, M., Nakamura, K., Nitta, K., Takenaka, N.: Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data 40, 301–310 (1995)

    Article  CAS  Google Scholar 

  27. Hedwig, G.R., Høiland, H.: Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J. Chem. Eng. Data 56, 2266–2272 (2011)

    Article  CAS  Google Scholar 

  28. Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)

    Article  CAS  Google Scholar 

  29. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Additivity of the partial molar heat capacities of the amino acid side-chains of small peptides: implications for unfolded proteins. Phys. Chem. Chem. Phys. 2, 5463–5468 (2000)

    Article  Google Scholar 

  30. Liu, J.L., Hakin, A.W., Hedwig, G.R.: Partial molar volumes and heat capacities of the N-acetyl amide derivatives of the amino acids asparagine, glutamine, tyrosine, and lysine monohydrochloride in aqueous solution at temperatures from T = 288.15 K to T = 328.15 K. J. Chem. Thermodyn. 38, 1640–1650 (2006)

    Article  CAS  Google Scholar 

  31. Swenson, D.M., Blodgett, M.B., Ziemer, S.P., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane, and 1,2-dimethoxyethane at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 40, 248–259 (2008)

    Article  CAS  Google Scholar 

  32. Desnoyers, J.E., Philip, P.R.: Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096 (1972)

    Article  CAS  Google Scholar 

  33. Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)

    Article  CAS  Google Scholar 

  34. Hedwig, G.R.: Thermodynamic properties of peptide solutions 19. Partial molar isothermal compressions at T = 298.15 K of some peptides of sequence gly-X-gly in aqueous solution. J. Chem. Thermodyn. 42, 208–212 (2010)

    Article  CAS  Google Scholar 

  35. Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18–55 °C. Biopolymers 34, 541–553 (1994)

    Article  CAS  Google Scholar 

  36. Taulier, N., Chalikian, T.V.: Compressibility of protein transitions. Biochim. Biophys. Acta 1595, 48–70 (2002)

    Article  CAS  Google Scholar 

  37. Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989)

    Article  CAS  Google Scholar 

  38. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Inger Johanne Fjellanger for her assistance with some of the speed of sound measurements and Einar Høgseth for his technical expertise in the maintenance of the speed of sound equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Hedwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedwig, G.R., Høiland, H. The Partial Molar Isothermal Compressions of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K. J Solution Chem 46, 849–861 (2017). https://doi.org/10.1007/s10953-017-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0606-y

Keywords

Navigation