Skip to main content
Log in

Studies on Gemini–Conventional Surfactant Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This article provides a detailed description of micelles formed upon mixing of cationic gemini alkanediyl-α,ω-bis(dimethylcetylammonium bromides) (henceforth referred as 16-s-16 where the spacer s = 4, 5, 6) with a cationic conventional surfactant cetyltriphenylphosphonium bromide (CTPB). For comparison, the conventional surfactant cetyltrimethylammonium bromide (CTAB) was also mixed with CTPB. The critical micelle concentration (cmc) values were obtained by tensiometric measurements. The results analyzed as per the Clint, Rubingh and Rosen models suggest strong synergism in the mixed systems. Ideal cmc values (cmc*) are always greater than the experimental values. The micellar mole fraction (X m1 ), interaction parameter (β m), obtained from Rubingh’s model, and interfacial mole fraction (X σ1 ), interaction parameter (β σ), obtained from Rosen’s model, show that the contribution of CTPB is less but the interaction is strong in mixed micelles as compared to a mixed monolayer. The CTPB molecule contains three phenyl rings and its adjustment at the planar surface (at the air/water interface) is easier than in the micellar surface. The surface excess (Γ max) and minimum area per head group (A min) values also support this conclusion, as these values are closer to that of pure CTPB. Thermodynamic parameters were also calculated. All these results suggest that mixed micelles are formed with strong synergism between the two components. The 1H NMR studies show that the gemini with spacer s = 4 is more de-shielded than the other geminis, suggesting that these micelles are crowded with more N-methyl protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Attwood, D., Florence, A.T.: Surfactant Systems: Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)

    Book  Google Scholar 

  2. Myers, D.: Surfactant Science and Technology. VCH Publications, New York (1988)

    Google Scholar 

  3. Clint, J.H.: Surfactant Aggregation. Blackie/Chapman and Hall, New York (1992)

    Book  Google Scholar 

  4. Zana, R., Benrraou, M., Rueff, R.: Alkanediyl-α,ω-bis(dimethylalkylammonium bromide). 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1072–1075 (1991)

    Article  CAS  Google Scholar 

  5. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Adv. Colloid Interface Sci. 97, 205–253 (2002)

    Article  CAS  Google Scholar 

  6. Alami, E., Beinert, G., Marie, P., Zana, R.: Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air–water interface. Langmuir 9, 1465–1467 (1993)

    Article  CAS  Google Scholar 

  7. Macian, M., Seguer, J., Infante, M.R., Selve, C., Vinardell, M.P.: Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine. Toxicology 106, 1–9 (1996)

    Article  CAS  Google Scholar 

  8. Camilleri, P., Kermer, A., Edwards, A.J., Jannings, K.H., Jenkins, O., Marshal, I., McGregov, C., Neville, W., Rice, S.Q., Smith, R.J., Wilkinson, M.J., Kirby, A.J.: A novel class of cationic gemini surfactants showing efficient in vitro gene transfection properties. Chem. Commun. 14, 1253–1254 (2000)

    Article  Google Scholar 

  9. Bombelli, C., Carcciolo, G., Profio, P.D., Diociauti, M., Luciani, P., Mancini, G., Mazzuca, C., Marra, M., Molinan, A., Monti, D., Toccacieli, L., Venanzi, M.: Inclusion of a photosensitizer in liposomes formed by DMPC/gemini surfactant: Correlation between physicochemical and biological features of the complexes. J. Med. Chem. 48, 4882–4891 (2005)

    Article  CAS  Google Scholar 

  10. Kirby, A.J., Camilleri, P., Engberts, J.B.F.N., Feiters, M.C., Nolte, R.J.M., Soderman, O., Bergsma, M., Bell, P.C., Fielden, M.L., Rodríguez, C.L.G., Guedat, P., Kremer, A., McGregor, C., Perrin, C., Ronsin, G., van Eijk, M.C.P.: Gemini surfactants: New synthetic vectors for gene transfection. Angew. Chem. Int. Ed. 42, 1448–1457 (2003)

    Article  CAS  Google Scholar 

  11. Bajaj, A., Paul, B., Indi, S.S., Kondaiah, P., Bhattacharya, S.: Effect of the hydrocarbon chain and polymethylene spacer lengths on gene transfection efficacies of gemini lipids based on aromatic backbone. Bioconjugate Chem. 18, 2144–2158 (2007)

    Article  CAS  Google Scholar 

  12. Gull, N., Sen, P., Khan, R.H., Kabir-ud-Din: Interaction of bovine (BSA), rabbit (RSA) and porcine (PSA) serum albumins with cationic single-chain/gemini surfactants: a comparative study. Langmuir 25, 11686–11691 (2009)

    Article  CAS  Google Scholar 

  13. Han, Y., He, C., Cao, M., Huang, X., Wang, Y., Li, Z.: Facile disassembly of amyloid fibrils using gemini surfactant micelles. Langmuir 26, 1583–1587 (2010)

    Article  CAS  Google Scholar 

  14. Khullar, P., Singh, V., Mahal, A., Dave, P.N., Thakur, S., Kaur, G., Singh, J., Kamboj, S.S., Bakshi, M.S.: Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J. Phys. Chem. C 116, 8834–8843 (2012)

    Article  CAS  Google Scholar 

  15. Yaseen, Z., Rehman, S., Tabish, M., Shalla, A.H., Kabir-ud-Din.: Modulation of bovine serum albumin fibrillation by ester bonded and conventional gemini surfactants. RSC Adv. 5, 58616–58624 (2015)

    Article  CAS  Google Scholar 

  16. Rosen, M.J.: Selection of surfactant pairs for optimization of interfacial properties. J. Am. Oil Chem. Soc. 66, 1840–1843 (1989)

    Article  CAS  Google Scholar 

  17. Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, New York (2004)

    Book  Google Scholar 

  18. Sharma, K.S., Rodgers, C., Palepu, R.M., Rakshit, A.K.: Studies of mixed surfactant solutions of cationic dimeric (gemini) surfactant with nonionic surfactant C12E6 in aqueous medium. J. Colloid Interface Sci. 268, 482–488 (2003)

    Article  CAS  Google Scholar 

  19. Moore, S.E., Mohareb, M., Moore, S.A., Palepu, R.M.: Conductometric and fluorometric investigations on the mixed micellar systems of cationic surfactants in aqueous media. J. Colloid Interface Sci. 304, 491–496 (2006)

    Article  CAS  Google Scholar 

  20. Szymczyk, K., Janczuk, B.: The properties of a binary mixture of nonionic surfactants in water at the water/air interface. Langmuir 23, 4972–4981 (2007)

    Article  CAS  Google Scholar 

  21. Ko, J.S., Oh, S.W., Kim, Y.S., Nakashima, S., Nagadome, S., Sugihara, G.: Adsorption and micelle formation of mixed surfactant systems in water. IV. Three combinations of SDS with Mega-8, -9 and -10. J. Oleo Sci. 53, 109–126 (2004)

    Article  CAS  Google Scholar 

  22. Alam, T.M., McIntyre, S.K.: Self-assembly and magnetic alignment in cetyltrimethylammonium bromide/sodium perfluorooctanoate surfactant mixtures investigated using 2H nuclear magnetic resonance spectroscopy. Langmuir 24, 13890–13896 (2008)

    Article  CAS  Google Scholar 

  23. Feitosa, E., Brown, W.: Mixed micelles of the anionic surfactant sodium dodecyl sulfate and the nonionic pentaethylene glycol mono-n-dodecyl ether in solution. Langmuir 14, 4460–4465 (1998)

    Article  CAS  Google Scholar 

  24. McCarroll, M.E., Toerne, K., von Wandruszka, R.: Preclouding in mixed micellar solutions. Langmuir 14, 6096–6100 (1998)

    Article  CAS  Google Scholar 

  25. Griffiths, P.C., Whatton, M.L., Abbott, R.J., Kwan, W., Pitt, A.R., Howe, A.M., King, S.M., Heenan, R.K.: Small-angle neutron scattering and fluorescence studies of mixed surfactants with dodecyl tails. J. Colloid Interface Sci. 215, 114–123 (1999)

    Article  CAS  Google Scholar 

  26. Moises de Oliveira, H.P., Gehlen, M.H.: Characterization of mixed micelles of sodium dodecyl sulfate and tetraoxyethylene dodecyl ether in aqueous solution. Langmuir 18, 3792–3796 (2002)

    Article  CAS  Google Scholar 

  27. Yamanaka, M., Amano, T., Ikeda, N., Aratono, M., Motomura, K.: Miscibility of dodecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in surface-adsorbed film and micelle. Colloid Polym. Sci. 270, 682–686 (1992)

    Article  CAS  Google Scholar 

  28. Szymczyk, K., Zdziennicka, A., Janczuk, B., Wojcik, W.: The properties of mixtures of two cationic surfactants in water at water/air interface. Colloids Surf. A 264, 147–156 (2005)

    Article  CAS  Google Scholar 

  29. Zhao, J., Christian, S.D., Fung, B.M.: Mixtures of monomeric and dimeric cationic surfactants. J. Phys. Chem. B 102, 7613–7618 (1998)

    Article  CAS  Google Scholar 

  30. Azum, N., Naqvi, A.Z., Akram, M., Kabir-ud-Din.: Studies of mixed micelle formation between cationic gemini and cationic conventional surfactants. J. Colloid Interface Sci. 328, 429–435 (2008)

    Article  CAS  Google Scholar 

  31. Azum, N., Naqvi, A.Z., Akram, M., Kabir-ud-Din.: Properties of mixed aqueous micellar solutions formed by cationic alkanediyl-α, ω-bis (tetradecyldimethylammonium bromide) and alkyltrimethylammonium bromide: Fluorescence and conductivity studies. J. Chem. Eng. Data 54, 1518–1523 (2009)

    Article  CAS  Google Scholar 

  32. Kabir-ud-Din, Sheikh, M.S., Dar, A.A.: Analysis of mixed micellar and interfacial behavior of cationic gemini hexanediyl-1,6-bis(dimethylcetylammonium bromide) with conventional ionic and nonionic surfactants in aqueous medium. J. Phys. Chem. B 114, 6023–6032 (2010)

    Article  Google Scholar 

  33. Kabir-ud-Din, Ajmal Koya, P.: Effect of acetonitrile on the micellization and thermodynamic parameters of tetradecyltrimethylammonium bromide: conductometric and fluorimetric studies. J. Mol. Liq. 158, 111–116 (2011)

    Article  CAS  Google Scholar 

  34. Siddiqui, U.S., Aslam, J., Ansari, W.H., Kabir-ud-Din.: Micellization and aggregation behavior of a series of cationic gemini surfactants (m-s-m type) on their interaction with a biodegradable sugar-based surfactant (octyl-β-D-glucopyranoside). Colloids Surf. A 421, 164–172 (2013)

    Article  CAS  Google Scholar 

  35. Kabir-ud-Din, Sharma, G., Naqvi, A.Z., Chaturvedi, S.K., Khan, R.H.: Ion–dipole induced interaction between cationic gemini/TTAB and nonionic (Tween) surfactants: Interfacial and microstructural phenomena. RSC Adv. 3, 6549–6959 (2013)

    Article  Google Scholar 

  36. Kabir-ud-Din, Sharma, G., Ajmal Koya, P.: Properties of binary mixtures of surfactants containing symmetric hydrophobic tails and ammonium/phosphonium head groups as studied by tensiometry and 1H NMR. J. Mol. Liq. 200, 145–152 (2014)

    Article  CAS  Google Scholar 

  37. Noori, S., Naqvi, A.Z., Ansari, W.H., Kabir-ud-Din.: Interfacial and adsorption approach between amphiphilic drug and counterion coupled gemini surfactants. J. Surf. Deterg. 18, 55–66 (2015)

    Article  CAS  Google Scholar 

  38. Scamehorn, J.F.: Phenomena in Mixed Surfactant Systems. ACS Symposium Series, vol. 311. ACS, Washington, DC (1986)

    Book  Google Scholar 

  39. Hill, R.M.: Chapter II. In: Ogino, K., Abe, M. (eds.) Mixed Surfactant Systems. Surfactant Science Series, vol. 46. Marcel Dekker, New York (1993)

    Google Scholar 

  40. Kabir-ud-Din, Sharma, G., Naqvi, A.Z.: Micellization and interfacial behavior of binary surfactant mixtures based on cationic geminis and nonionic Tweens. Colloids Surf. A 385, 63–71 (2011)

    Article  CAS  Google Scholar 

  41. Hirata, H., Hattori, N., Ishida, M., Okabayashi, H., Frusaka, F., Zana, R.: Small-angle neutron-scattering study of bis(quaternary ammonium bromide) surfactant micelles in water. Effect of the spacer chain length on micellar structure. J. Phys. Chem. 99, 17778–17784 (1995)

    Article  CAS  Google Scholar 

  42. Tikariha, D., Ghosh, K.K., Barbero, N., Quagliotto, P., Ghosh, S.: Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous–ethylene glycol mixture. Colloids Surf. A 381, 61–69 (2011)

    Article  CAS  Google Scholar 

  43. Rubingh, D.N.: Mixed solutions. In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants, vol. 1. Plenum, New York (1979)

    Google Scholar 

  44. Sierra, M.B., Morini, M.A., Schulz, P.C., Junquera, E., Aicart, E.: Effect of double bonds in the formation of sodium dodecanoate and sodium 10-undecenoate mixed micelles in water. J. Phys. Chem. B 111, 11692–11699 (2007)

    Article  CAS  Google Scholar 

  45. Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess. Plenum, New York (1984)

    Book  Google Scholar 

  46. Rosen, M.J., Aronson, S.: Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids Surf. 3, 201–208 (1981)

    Article  CAS  Google Scholar 

  47. Sugihara, G., Miyazono, A.M., Nagadome, S., Oida, T., Hayashi, Y., Ko, J.S.: Adsorption and micelle formation of mixed surfactant systems in water. II a combination of cationic gemini-type with MEGA-10. J. Oleo Sci. 52, 449–461 (2003)

    Article  CAS  Google Scholar 

  48. Ulmius, J., Wennerstrom, H.: Proton NMR bandshapes for large aggregates; micellar solutions of hexadecyltrimethylammonium bromide. J. Magn. Res. 28, 309–312 (1977)

    CAS  Google Scholar 

  49. Anet, F.A.L.: Novel spin–spin splitting and relaxation effects in the proton nmr spectra of sodium salicylate in viscoelastic micelles. J. Am. Chem. Soc. 108, 7102–7103 (1986)

    Article  CAS  Google Scholar 

  50. Olsson, U., Soederman, O., Guering, P.: Characterization of micellar aggregates in viscoelastic surfactant solutions. A nuclear magnetic resonance and light scattering study. J. Phys. Chem. 90, 5223–5232 (1986)

    Article  CAS  Google Scholar 

  51. Manohar, C., Rao, U.R.K., Valaulikar, B.S., Iyer, R.M.: On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate. J. Chem. Soc., Chem. Commun. 5, 379–381 (1986)

    Article  Google Scholar 

  52. Groth, C., Nydén, M., Holmberg, K., Kanicky, J.R., Shah, D.O.: Kinetics of the self-assembly of gemini surfactants. J. Surf. Deterg. 7, 247–255 (2004)

    Article  CAS  Google Scholar 

  53. Kabir-ud-Din, Fatma, W., Khan, Z.A., Dar, A.A.: 1H NMR and viscometric studies on cationic gemini surfactants in presence of aromatic acids and salts. J. Phys. Chem. B 111, 8860–8867 (2007)

    Article  CAS  Google Scholar 

  54. Siddiqui, U.S., Ghosh, G., Kabir-ud-Din.: Dynamic light scattering studies of additive effects on the microstructure of aqueous gemini micelles. Langmuir 22, 9874–9878 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Council of Science and Technology, U.P., Lucknow, for a research Grant (No-CST/SERPD/D-3199) and to SAIF, CDRI, Lucknow, for providing 1H NMR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir-ud-Din.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir-ud-Din, Sharma, G. & Naqvi, A.Z. Studies on Gemini–Conventional Surfactant Mixtures. J Solution Chem 46, 815–830 (2017). https://doi.org/10.1007/s10953-017-0605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0605-z

Keywords

Navigation