Abstract
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity dilution for 14 different aliphatic and cyclic hydrocarbons (alkanes, cycloalkanes, alkenes, alkynes), eight different aromatic compounds (benzene, alkylbenzenes, halobenzenes), five different chloroalkanes (dichloromethane, trichloromethane, 1-chlorobutane, 1,2-dichloropropane, isopropylbromide), tetrahydrofuran, butyl acetate, and acetonitrile dissolved in diethylene glycol at 298.15 K. Solubilities were also measured at 298.15 K for 31 crystalline nonelectrolyte organic solutes including several polycyclic aromatic hydrocarbons and substituted benzoic acid derivatives. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-diethylene glycol and water-to-diethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into diethylene glycol from the calculated partition coefficients and solubility ratios. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.14 log10 units (or less).
Similar content being viewed by others
References
Stephens, T.W., Quay, A.N., Chou, V., Loera, M., Shen, C., Wilson, A., Acree Jr., W.E., Abraham, M.H.: Correlation of solute transfer into alkane solvents from water and from the gas phase with updated Abraham model equations. Glob. J. Phys. Chem. 3, 1–42 (2012)
Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree Jr., W.E.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)
Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for solute partitioning into o-xylene, m-xylene and p-xylene from both water and the gas phase. Fluid Phase Equilib. 308, 64–71 (2011)
Stephens, T.W., Loera, M., Quay, A.N., Chou, V., Shen, C., Wilson, A., Acree Jr., W.E., Abraham, M.H.: Correlation of solute transfer into toluene and ethylbenzene from water and from the gas phase based on the Abraham model. Open Thermodyn. J. 5, 104–121 (2011)
Abraham, M.H., Acree Jr., W.E., Leo, A.J., Hoekman, D.: Partition of compounds from water and from air into the wet and dry monohalobenzenes. New J. Chem. 33, 1685–1692 (2009)
Sprunger, L.M., Achi, S.S., Pointer, R., Blake-Taylor, B.H., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for solvation characteristics of linear alcohols. Fluid Phase Equilib. 286, 170–174 (2009)
Sprunger, L.M., Achi, S.S., Pointer, R., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for solvation characteristics of secondary and branched alcohols. Fluid Phase Equilib. 288, 121–127 (2010)
Stovall, D.M., Dai, C., Zhang, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into anhydrous 1,2-propylene glycol for neutral and ionic species. Phys. Chem. Liq. 54, 1–13 (2016)
Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, C., Acree Jr., W.E., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)
Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for solute transfer into 2-ethoxyethanol from water and from the gas phase. J. Mol. Liq. 208, 63–70 (2015)
Sedov, I.A., Khaibrakhmanova, D., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Schmidt, A., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J. Mol. Liq. 212, 833–840 (2015)
Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into 2-butoxyethanol from both water and the gas phase at 298 K. J. Mol. Liq. 209, 196–202 (2015)
Saifullah, M., Ye, S., Grubbs, L.M., De La Rosa, N.E., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for transfer of neutral molecules to tetrahydrofuran and to 1,4-dioxane, and for transfer of ions to tetrahydrofuran. J. Solution Chem. 40, 2082–2094 (2011)
Brumfield, M., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into diisopropyl ether. Phys. Chem. Liq. 53, 25–37 (2015)
Abraham, M.H., Acree Jr., W.E., Leo, A.J., Hoekman, D.: The partition of compounds from water and from air into wet and dry ketones. New J. Chem. 33, 568–573 (2009)
Abraham, M.H., Acree Jr., W.E., Cometto-Muniz, J.E.: Partition of compounds from water and from air into amides. New J. Chem. 33, 2034–2043 (2009)
Brumfield, M., Wadawadigi, A., Kuprasertkul, N., Mehta, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for solute transfer into tributyl phosphate from both water and the gas phase. Phys. Chem. Liq. 53, 10–24 (2015)
Abraham, M.H., Acree Jr., W.E.: The transfer of neutral molecules, ions and ionic species from water to benzonitrile; comparison with nitrobenzene. Thermochim. Acta 526, 22–28 (2011)
Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for transfer of neutral molecules and ions to sulfolane. Fluid Phase Equilib. 309, 30–35 (2011)
Abraham, M.H., Zad, M., Acree Jr., W.E.: The transfer of neutral molecules from water and from the gas phase to solvents acetophenone and aniline. J. Mol. Liq. 212, 301–306 (2015)
Stovall, D.M., Schmidt, A., Dai, C., Zhang, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for estimating solute transfer of neutral molecules into anhydrous acetic acid from water and from the gas phase. J. Mol. Liq. 212, 16–22 (2015)
Abraham, M.H., Acree Jr., W.E.: Descriptors for the prediction of partition coefficients and solubilities of organophosphorus compounds. Sep. Sci. Technol. 48, 884–897 (2013)
Abraham, M.H., Acree Jr., W.E., Earp, C.E., Vladimirova, A., Whaley, W.L.: Studies on the hydrogen bond acidity, and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J. Mol. Liq. 208, 363–372 (2015)
Abraham, M.H., Acree Jr., W.E.: Equations for water–triolein partition coefficients for neutral species; comparison with other water–solvent partitions, and environmental and toxicological processes. Chemosphere 154, 48–54 (2016)
Abraham, M.H., Acree Jr., W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–methanol mixtures. J. Solution Chem. 45, 861–874 (2016)
Abraham, M.H., Acree Jr., W.E.: Partition coefficients and solubilities of compounds in the water–ethanol solvent system. J. Solution Chem. 40, 1279–1290 (2011)
Abraham, M.H., Acree Jr., W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–ethanol mixtures. J. Solution Chem. 41, 730–740 (2012)
Revelli, A.-L., Mutelet, F., Jaubert, J.-N., Garcia-Martinez, M., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 2434–2443 (2010)
Mutelet, F., Revelli, A.-L., Jaubert, J.-N., Sprunger, L.M., Acree Jr., W.E., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010)
Moise, J.-C., Mutelet, F., Jaubert, J.-N., Grubbs, L.M., Acree Jr., W.E., Baker, G.A.: Activity coefficients at infinite dilution of organic compounds in four new imidazolium-based ionic liquids. J. Chem. Eng. Data 56, 3106–3114 (2011)
Domanska, U., Krolikowska, M., Acree Jr., W.E., Baker, G.A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J. Chem. Thermodyn. 43, 1050–1057 (2011)
Acree Jr., W.E., Baker, G.A., Mutelet, F., Moise, J.-C.: Partition coefficients of organic compounds in four new tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 56, 3688–3697 (2011)
Mutelet, F., Hassan, E.-S.R.E., Stephens, T.W., Acree Jr., W.E., Baker, G.A.: Activity coefficients at infinite dilution for organic solutes dissolved in three 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids bearing short linear alkyl side chains of three to five carbons. J. Chem. Eng. Data 58, 2210–2218 (2013)
Acree Jr., W.E., Baker, G.A., Revelli, A.-L., Moise, J.-C., Mutelet, F.: Activity coefficients at infinite dilution for organic compounds dissolved in 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids having six-, eight-, and ten-carbon alkyl chains. J. Chem. Eng. Data 57, 3510–3518 (2012)
Grubbs, L.M., Ye, S., Saifullah, M., Acree Jr., W.E., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of hexyl(trimethyl)ammonium bis((trifluoromethyl)sulfonyl)imide, 1-propyl-1-methylpiperidinium bis((trifluoromethyl)-sulfonyl)imide, and 1-butyl-1-methylpyrrolidinium thiocyanate. J. Solution Chem. 40, 2000–2022 (2011)
Stephens, T.W., Acree Jr., W.E., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpyrrolidinium tetracyanoborate. J. Solution Chem. 41, 1165–1184 (2012)
Ayad, A., Mutelet, F., Negadi, A., Acree Jr., W.E., Jiang, B., Lu, A., Wagle, D.V., Baker, G.A.: Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. J. Mol. Liq. 215, 176–184 (2016)
Jou, F.-Y., Otto, F.D., Mather, A.E.: Solubility of H2S and CO2 in diethylene glycol at elevated pressures. Fluid Phase Equilib. 175, 53–61 (2000)
Lan, G., Zhang, J., Sun, S., Xu, Q., Xiao, J., Wei, X.: Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N,N-dimethylformamide + diethylene glycol. Fluid Phase Equilib. 373, 89–99 (2014)
Jou, F.Y., Otto, F.D., Mather, A.E.: Solubility of methane in glycols at elevated pressures. Can. J. Chem. Eng. 72, 130–133 (1994)
Jou, F.Y., Schmidt, K.A., Mather, A.E.: Solubility of ethane in diethylene glycol. J. Chem. Eng. Data 50, 1983–1985 (2005)
Park, J.H., Hussam, A., Couasnon, P., Fritz, D., Carr, P.W.: Experimental reexamination of selected partition coefficients from Rohrschneider’s data set. Anal. Chem. 59, 1970–1976 (1987)
Han, S., Xu, J., Meng, L., Du, C.B., Xu, R.J., Wang, J., Zhao, H.K.: Determination and modeling of binary and ternary solid–liquid phase equilibrium for the systems formed by adipic acid, urea and diethylene glycol. Fluid Phase Equilib. 412, 1–8 (2016)
Alessi, P., Kikic, I., Stele, L.: Gas chromatographic investigation of solvents with partial miscibility. Croat. Chem. Acta 47, 1–7 (1975)
Alessi, P., Kikic, I., Tlustos, G.: Activity coefficients of hydrocarbons in glycols. Chim. e l’Industria 53, 925–928 (1971)
Arancibia, E.L., Catoggio, J.A.: Gas chromatographic study of solution and adsorption of hydrocarbons on glycols: I. Diethylene glycol and triethylene glycol. J. Chromatogr. 197, 135–145 (1980)
Pierotti, G.J., Deal, C.H., Derr, E.L.: Activity coefficients and molecular structure. Ind. Eng. Chem. 51, 95–102 (1959)
Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Tert-butyl chloride as a probe of solvophobic effects. Fluid Phase Equilib. 382, 164–168 (2014)
Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Enthalpies and Gibbs free energies of solvation in ethylene glycol at 298 K: influence of the solvophobic effect. Fluid Phase Equilib. 354, 95–101 (2013)
Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Thermodynamics of solvation in propylene glycol and methyl cellosolve. J. Chem. Thermodyn. 78, 32–36 (2014)
Lide, R.D.: CRC Handbook of Chemistry and Physics, 85th edn. CRC Press, Boca Raton (2004)
Gharagheizi, F., Eslamimanesh, A., Ilani-Kashkouli, P., Mohammadi, A.H., Richon, D.: Determination of vapor pressure of chemical compounds: a group contribution model for an extremely large database. Ind. Eng. Chem. Res. 51, 7119–7125 (2012)
Endler, I., Hradetzky, G., Bittrich, H.J.: Limiting activity coefficients of hydrocarbons in diethylene glycol measured by the method of kinetic entrainment. Z. Phys. Chem. Leipzig. 265, 409–411 (1984)
De Fina, K.M., Sharp, T.L., Acree Jr., W.E.: Solubility of acenaphthene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can. J. Chem. 77, 1537–1541 (1999)
Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib. 232, 113–121 (2005)
De Fina, K.M., Sharp, T.L., Roy, L.E., Acree Jr., W.E.: Solubility of 2-hydroxybenzoic acid in select organic solvents at 298.15 K. J. Chem. Eng. Data 44, 1262–1264 (1999)
Ye, S., Saifullah, M., Grubbs, L.M., McMillan-Wiggins, M.C., Acosta, P., Mejorado, D., Flores, I., Acree Jr., W.E., Abraham, M.H.: Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys. Chem. Liq. 49, 821–829 (2011)
Stovall, D.M., Givens, C., Keown, S., Hoover, K.R., Barnes, R., Harris, C., Lozano, J., Nguyen, M., Rodriguez, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 43, 351–360 (2005)
Coaxum, R., Hoover, K.R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 3 – Mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 313–322 (2004)
Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J. Solution Chem. 31, 293–303 (2002)
Monarrez, C.I., Acree Jr., W.E., Abraham, M.H.: Prediction and mathematical correlation of the solubility of fluorene in alcohol solvents based upon the Abraham general solvation model. Phys. Chem. Liq. 40, 581–591 (2002)
Fletcher, K.A., Hernandez, C.E., Roy, L.E., Coym, K.S., Acree Jr., W.E.: Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon the general solvation model. Can. J. Chem. 77, 1214–1217 (1999)
Hoover, K.R., Coaxum, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 5-Mathematical correlation of 3,5-dinitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 457–466 (2004)
Fletcher, K.A., Coym, K.S., Roy, L.E., Hernandez, C.E., McHale, M.E.R., Acree Jr., W.E.: Solubility of thioxanthen-9-one in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory (MOT). Phys. Chem. Liq. 35, 243–252 (1998)
Brumfield, M., Wadawadigi, A., Kuprasertkul, N., Mehta, S., Stephens, T.W., Barrera, M., De La Rosa, J., Kennemer, K., Meza, J., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys. Chem. Liq. 53, 163–173 (2015)
Stephens, T.W., Loera, M., Calderas, M., Diaz, R., Montney, N., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for benzoin based on measured solubility ratios. Phys. Chem. Liq. 50, 254–265 (2012)
Blake-Taylor, B.H., Deleon, V.H., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 45, 389–398 (2007)
Bowen, K.R., Stephens, T.W., Lu, H., Satish, K., Shan, D., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur. Chem. Bull. 2, 577–583 (2013)
Hoover, K.R., Coaxum, R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 4—mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 339–347 (2004)
Charlton, A.K., Daniels, C.R., Wold, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2004)
Hoover, K.R., Acree Jr., W.E., Abraham, M.H.: Correlation of the solubility behavior of crystalline 1-nitronaphthalene in organic solvents with the Abraham solvation parameter model. J. Solution Chem. 34, 1121–1133 (2005)
Acree Jr., W.E., Abraham, M.H.: Solubility predictions for crystalline polycyclic aromatic hydrocarbons (PAHs) dissolved in organic solvents based upon the Abraham general solvation model. Fluid Phase Equilib. 201, 245–258 (2002)
Daniels, C.R., Charlton, A.K., Wold, R.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can. J. Chem. 81, 1492–1501 (2003)
Wilson, A., Tian, A., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous–ethanol mixtures. Phys. Chem. Liq. 50, 324–335 (2012)
Hoover, K.R., Stovall, D.M., Pustejovsky, E., Coaxum, R., Pop, K., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents—Mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can. J. Chem. 82, 1353–1360 (2014)
Acree Jr., W.E., Abraham, M.H.: Solubility predictions for crystalline nonelectrolyte solutes dissolved in organic solvents based upon the Abraham general solvation model. Can. J. Chem. 79, 1466–1476 (2001)
Roy, L.E., Hernandez, C.E., Acree Jr., W.E.: Solubility of anthracene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory (MOT). Polycycl. Aromat. Compd. 13, 105–116 (1999)
De Fina, K.M., Sharp, T.L., Acree Jr., W.E.: Solubility of biphenyl in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can. J. Chem. 77, 1589–1593 (1999)
Abraham, M.H., Zissimos, A.M., Acree Jr., W.E.: Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether: a linear free energy relationship analysis. Phys. Chem. Chem. Phys. 3, 3732–3736 (2001)
PCModel, version 7.50.00.: Serena Software (2000)
Missopolinou, D., Panayiotou, C.: Thermodynamics of systems of (oxy)alcohols and (poly)ethers. Fluid Phase Equilib. 110, 73–88 (1995)
Sethu Raman, M., Kesavan, M., Senthilkumar, K., Ponnuswamy, V.: Ultrasonic, DFT and FT–IR studies on hydrogen bonding interactions in aqueous solutions of diethylene glycol. J. Mol. Liq. 202, 115–124 (2015)
Acknowledgements
The work of Igor Sedov and Timur Magsumov was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. Elizabeth Higgins thanks the University of North Texas’s Texas Academy of Math and Science (TAMS) program for a summer research award.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sedov, I.A., Magsumov, T.I., Hart, E. et al. Abraham Model Expressions for Describing Water-to-Diethylene Glycol and Gas-to-Diethylene Glycol Solute Transfer Processes at 298.15 K. J Solution Chem 46, 331–351 (2017). https://doi.org/10.1007/s10953-017-0579-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-017-0579-x