Skip to main content
Log in

Study on the Interaction of Nicotinic Acid with l-Phenylalanine in Buffer Solution by Heat Capacity Measurements at Various Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction between nicotinic acid (NA) and l-phenylalanine (Phe) was studied in aqueous phosphate buffer solutions (pH = 7.35) by differential scanning calorimetry. Heat capacities of nicotinic acid–buffer, l-phenylalanine–buffer, and nicotinic acid–l-phenylalanine–buffer mixtures were determined at (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15) K using the microdifferential scanning calorimeter SCAL-1 (Pushchino, Russia). The apparent molar heat capacities, ϕ C p , of nicotinic acid in buffer solution and in buffer 0.0216 mol·kg−1 amino acid solutions were evaluated. The concentration of NA was varied from (0.0106–0.0701) mol·kg−1. The interaction of NA with Phe is accompanied by complex formation. The partial molar heat capacities of transfer of nicotinic acid from buffer to buffer amino acid solutions are positive. The results are discussed in terms of various interactions operating in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koohyar, F., Rostami, A.A., Chaichi, M.J., Kiani, F.: Refractive indices, viscosities, and densities for l-cysteine hydrochloride monohydrate + D-sorbitol + water, and glycerol + D-sorbitol + water in the temperature range between T = 303.15 and T = 323.15 K. J. Solution Chem. 40, 1361–1370 (2011)

    Article  CAS  Google Scholar 

  2. Lark, B.S., Patyar, P., Banipal, T.S., Kishore, N.: Densities, partial molar volumes and heat capacities of glycine, l-alanine, and l-leucine in aqueous magnesium chloride solutions at different temperatures. J. Chem. Eng. Data 49, 553–565 (2004)

    Article  CAS  Google Scholar 

  3. Banik, I., Roy, M.N.: Study of solute–solvent interaction of some bio-active solutes prevailing in aqueous ascorbic acid solution. J. Mol. Liq. 169, 8–14 (2012)

    Article  CAS  Google Scholar 

  4. Sashin, M., Ayranci, E.: Studies on the interactions of diglycine and triglycine with polyethylene glycol 400 in aqueous solutions by density and ultrasound speed measurements. J. Chem. Thermodyn. 58, 70–82 (2013)

    Article  Google Scholar 

  5. Makhatadze, G.I., Privalov, P.L.: Heat capacity of proteins: I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J. Mol. Biol. 213, 375–384 (1990)

    Article  CAS  Google Scholar 

  6. Hakin, A.W., Duke, M.M., Klassen, A., McKay, R.M., Preuss, K.E.: Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K. Can. J. Chem. 72, 362–368 (1994)

    Article  CAS  Google Scholar 

  7. Bhat, R., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)

    Article  CAS  Google Scholar 

  8. Singh, S.K., Kishore, N.: Partial molar volumes of amino acids and peptides in aqueous salt solutions at 25 °C and a correlation with stability of proteins in the presence of salts. J. Solution Chem. 32, 117–135 (2003)

    Article  CAS  Google Scholar 

  9. Prasad, K.P., Ahluwalia, J.C.: Heat capacities of transfer of some amino acids and peptides from water to aqueous urea solutions. Biopolymers 19, 273–284 (1980)

    Article  CAS  Google Scholar 

  10. Liu, C., Zhou, L., Lin, R.: Interactions of some amino acids with aqueous N,N-dimethylacetamide solutions at 298.15 and 308.15 K: a volumetric approach. J. Solution Chem. 36, 923–937 (2007)

    Article  CAS  Google Scholar 

  11. Banipal, T.S., Singh, G., Lark, B.S.: Densities and partial molar volumes of some amino acids and diglycine in aqueous n-propanol at 25°C. J. Solution Chem. 32, 997–1015 (2001)

    Article  Google Scholar 

  12. Roberts, M.J., Bently, M.D., Harris, J.M.: Chemistry for peptide and protein PEGylation. Adv. Drug Delivery Rev. 54, 459–476 (2002)

    Article  CAS  Google Scholar 

  13. Khalil, M.M., Fazary, A.E.: Potentiometric studies on binary and ternary vomplexes of di- and trivalent metal ions involving some hdroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 135, 1455–1474 (2004)

    Article  CAS  Google Scholar 

  14. Makrlík, E., Selucký, P., Vaňura, P.: Complexation of some protonated α-amino acid methyl esters with benzo-18-crown-6 in nitrobenzene saturated with water. J. Mol. Liq. 180, 21–224 (2013)

    Article  Google Scholar 

  15. Kopelevich, V.M., Gunar, V.I.: Search for new drugs. Some approaches to the directed search for new drugs based on nicotinic acid. Pharmaceut. Chem. J. 33, 177–187 (1999)

  16. Gonçalves, E.M., Joseph, A., Conceição, A.C.L., Minas da Piedade, M.E.: Potentiometric titration study of the temperature and ionic strength dependence of the of the acidity constants of nicotinic acid (niacin). J. Chem. Eng. Data 56, 2964–2970 (2011)

    Article  Google Scholar 

  17. Badeline, V.G., Tyunina, E.Y., Mezhevoi, I.N., Tarasova, G.N.: Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K. Russ. J. Phys. Chem. A 87, 1306–1309 (2013)

    Article  Google Scholar 

  18. Tyunina, EYu., Badelin, V.G., Mezhevoi, I.N., Tarasova, G.N.: Thermodynamics of aromatic amino acid interactions with heterocyclic ligands. J. Mol. Liq. 211, 494–497 (2015)

    Article  CAS  Google Scholar 

  19. Tyunina, EYu., Badelin, V.G.: Interaction of l-phenylalanine with nicotinic acid in buffer solution by volumetric measurements at various temperatures. J. Solution Chem. 45, 475–482 (2016)

    Article  CAS  Google Scholar 

  20. Senin, A.A., Potekhin, S.A., Tiktopulo, E.I., Filimonov, V.V.: Differential scanning microcalorimeter SCAL-1. J. Therm. Anal. Calorim. 62, 153–160 (2000)

    Article  CAS  Google Scholar 

  21. Senin, A.A., Dzhavadov, L.N., Potekhin, S.A.: High-pressure differential scanning microcalorimeter. Rev. Sci. Instrum. 87, 034901–034906 (2016)

    Article  CAS  Google Scholar 

  22. Desnoyers, J.E., Visser, C., Perron, G., Picker, P.: Reexamination of the heat capacities obtained by flow microcalorimetry. Recommendation for the use of a chemical standard. J. Solution Chem. 5, 605–616 (1976)

    Article  CAS  Google Scholar 

  23. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl·2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  24. Woolley, E.M.: A new tool for an old job: using fixed cell scanning calorimetry to investigate dilute aqueous solutions. J. Chem. Thermodyn. 39, 1300–1317 (2007)

    Article  CAS  Google Scholar 

  25. Schröder, E., Thomauske, K., Schmalzbauer, J., Herberger, S., Gebert, C., Velevska, M.: Design and test of a new flow calorimeter for online detection of geothermal water heat capacity. Geothermics. 53, 202–212 (2015)

    Article  Google Scholar 

  26. Krumgalz, B.S., Malester, I.A., Ostrich, I.J., Millero, F.J.: Heat capacities of concentrated multicomponent aqueous electrolyte solutions at various temperatures. J. Solution Chem. 21, 635–649 (1992)

    Article  CAS  Google Scholar 

  27. Clarke, E.C.W., Glew, D.N.: Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. J. Phys. Chem. Ref. Data 14, 490–610 (1985)

    Article  Google Scholar 

  28. Simard, M.-A., Fortier, J.-L.: Heat capacity measurements of liquids with a Picker mixing flow microcalorimeter. Can. J. Chem. 59, 3208–3211 (1981)

    Article  CAS  Google Scholar 

  29. Harned, H.S., Owen B.B.: The Physical Chemistry of Electrolytic Solutions. New York (1950)

  30. Hakin, A.W., Duke, M.M., Groft, L.L., Marty, J.L., Rushfeldt, M.L.: Calorimetric investigations of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 73, 725–734 (1995)

    Article  CAS  Google Scholar 

  31. Bhuiyan, M.M.H., Hakin, A.W., Liu, J.L.: Densities, specific heat capacities, apparent and partial molar volumes and heat capacities of glycine in aqueous solutions of formamid, acetamide, and N,N-dimethylacetamide at T = 298.15 K and ambient pressure. J. Solution Chem. 39, 877–896 (2010)

    Article  CAS  Google Scholar 

  32. Zielenkiewicz, A., Busserolles, K., Roux-Desgranges, G., Roux, A.H., Grolier, J.-P.E., Zielenkiewicz, W.: Molar heat capacities and volumes of transfer of cytosine, thymine, caffeine and 1,3-diethylthymine to aqueous solutions of glycyl-glycine and l-α-alanyl-l-α-alanine at 25 °C. J. Solution Chem. 24, 623–632 (1995)

    Article  CAS  Google Scholar 

  33. Zielenkiewicz, W., Pietraszkiewicz, O., Wszelaka-Rylic, M., Pietraszkiewicz, M., Royx-Desgranges, G., Roux, A.H., Grolier, J.-P.E.: Molecular interactions of macrocycles with dipeptides in aqueous solutions. Partial molar volumes and heat capacities of transfer of a chiral 18-crown-6 and calyx[4]resorcinarene derivative from water to aqueous dipeptide solutions at 25 °C. J. Solution Chem. 27, 121–134 (1998)

    Article  CAS  Google Scholar 

  34. Banipal, P.K., Banipal, T.S., Ahluwalia, J.C., Lark, B.S.: Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T = 298.15 K. J. Chem. Thermodyn. 34, 1825–1846 (2002)

  35. Jasra, R.V., Ahluwalia, J.C.: Enthalpies of solution, partial molar heat capacities and apparent molar volumes of sugars and polyols in water. J. Solution Chem. 11, 325–338 (1982)

    CAS  Google Scholar 

  36. Morel, J.-P., Lhermet, C., Morel-Desrosiers, N.: Interactions between cations and sugars. II. Enthalpies, heat capacities, and volumes of aqueous solutions of Ca2+-d-ribose and Ca2+-arabinose at 25 °C. Can. J. Chem. 64, 996–1001 (1986)

    Article  CAS  Google Scholar 

  37. Latìsheva, V.A.: Modern investigations of heat capacity in aqueous electrolytes solutions. Russ. Chem. Rev. XLII, 1757–1787 (1973) [in Russian]

  38. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Additivity of the partial molar heat capacities of the amino acid side-chains of small peptides: implications for unfolded proteins. Phys. Chem. Chem. Phys. 2, 5463–5468 (2000)

    Article  Google Scholar 

  39. Kundu, A., Kishore, N.: Apparent molar heat capacities and apparent molar volumes of aqueous nicotinamide at different temperatures. J. Solution Chem. 32, 703–717 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the heat capacity measurements were carried out using the equipment of the “The Upper-Volga Regional Centre of Physicochemical Researches” (being located at the G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Science, Ivanovo, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Tyunina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyunina, E.Y., Badelin, V.G. & Mezhevoi, I.N. Study on the Interaction of Nicotinic Acid with l-Phenylalanine in Buffer Solution by Heat Capacity Measurements at Various Temperatures. J Solution Chem 46, 249–258 (2017). https://doi.org/10.1007/s10953-017-0570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0570-6

Keywords

Navigation