Skip to main content

Advertisement

Log in

Ionic Liquid: A Good Pressure Transmitting Medium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A potential new use of room temperature ionic liquid for a pressure transmitting medium is introduced in detail. A systematic study of the pressure-induced solidification of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) is presented in a diamond anvil cell at pressures up to 30 GPa by combining ruby fluorescence and synchrotron X-ray diffraction measurements. Its hydrostatic properties have been determined with hydrostatic limit up to about 6 GPa, and a slight pressure gradient was found up to 21 GPa. These results indicate that this kind of ionic liquid is a good hydrostatic pressure transmitting medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bassett, W.A.: Diamond anvil cell, 50th birthday. High Press. Res. 29, 163–186 (2009)

    Article  CAS  Google Scholar 

  2. Balzaretti, N.M., Perottoni, C.A., da Jornada, J.A.H.: High-pressure Raman and infrared spectroscopy of polyacetylene. J. Raman Spectrosc. 34, 259–263 (2003)

    Article  CAS  Google Scholar 

  3. Klotz, S., Chervin, J.C., Munsch, P., Le Marchand, G.: Hydrostatic limits of 11 pressure transmitting media. J. Phys. D 42, 075413 (2009)

    Article  Google Scholar 

  4. Rogers, R.D., Seddon, K.R., Volkov, S.: Green Industrial Applications of Ionic Liquids. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 92. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  5. Rogers, R.D., Seddon, K.R.: Ionic Liquids as Green Solvents: Progress and Prospects. ACS Symposium Series 856. ACS, Washington (2003)

    Book  Google Scholar 

  6. Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D.: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11, 646–655 (2009)

    Article  CAS  Google Scholar 

  7. Tan, S.S., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O., Patti, A.F., Pringle, J.M., Scott, J.L.: Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11, 339–345 (2009)

    Article  CAS  Google Scholar 

  8. Hough, W.L., Rogers, R.D.: Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn 80, 2262–2269 (2007)

    Article  CAS  Google Scholar 

  9. Dean, P.M., Turanjanin, J., Yoshizawa-Fujita, M., MacFarlane, D.R., Scott, J.L.: Exploring an anti-crystal engineering approach to the preparation of pharmaceutically active ionic liquids. Cryst. Growth Des. 9, 1137–1145 (2008)

    Article  Google Scholar 

  10. Wojnarowska, Z., Paluch, M., Grzybowski, A., Adrjanowicz, K., Grzybowska, K., Kaminski, K., Wlodarczyk, P., Pionteck, J.: Study of molecular dynamics of pharmaceutically important protic ionic liquid-verapamil hydrochloride. I. Test of thermodynamic scaling. J. Chem. Phys. 131, 104505 (2009)

    Article  Google Scholar 

  11. Huang, X., Margulis, C.J., Li, Y., Berne, B.J.: Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+][\({\text{PF}_{6}^{-}}\)]. J. Am. Chem. Soc. 127, 17842–17851 (2005)

    Article  CAS  Google Scholar 

  12. Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J.: Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc. 126, 5300–5308 (2004)

    Article  CAS  Google Scholar 

  13. Tsuda, T., Hussey, C.L.: Electrochemical applications of room-temperature ionic liquids. Electrochem. Soc. Interface 16, 42–49 (2007)

    Google Scholar 

  14. MacFarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res. 40, 1165–1173 (2007)

    Article  CAS  Google Scholar 

  15. Wu, B., Reddy, R., Rogers, R.: Solar Energy: The Power to Choose. In: Proceedings of Solar Forum, ASME, Washington (2001)

  16. Mao, H.K., Bell, P.M., Shaner, J.T., Steinberg, D.J.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978)

    Article  CAS  Google Scholar 

  17. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D.: Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996)

    Article  Google Scholar 

  18. Piermarini, G.J., Block, S., Barnett, J.D.: Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys. 44, 5377–5382 (1973)

    Article  CAS  Google Scholar 

  19. Asaumi, K., Ruoff, A.L.: Nature of the state of stress produced by xenon and some alkali iodides when used as pressure media. Phys. Rev. B 33, 5633–5636 (1986)

    Article  CAS  Google Scholar 

  20. Meade, C., Jeanloz, R.: Yield strength of MgO to 40 GPa. J. Geophys. Res. 93, 3261–3269 (1988)

    Article  CAS  Google Scholar 

  21. Meade, C., Jeanloz, R.: Yield strength of Al2O3 at high pressures. Phys. Rev. B 42, 2532–2535 (1990)

    Article  CAS  Google Scholar 

  22. Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D., Jacobsen, S.D.: Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Cryst. 40, 26–32 (2007)

    Article  CAS  Google Scholar 

  23. Faria, L.F.O., Nobrega, M.M., Temperini, M.L.A., Ribeiro, M.C.C.: Ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion for high-pressure Raman spectroscopy measurements. J. Raman Spectrosc. 44, 481–484 (2013)

    Article  CAS  Google Scholar 

  24. Handy, S. T.: Ionic Liquids—Classes and Properties. In: Tech, Rijeka, Croatia (2011)

  25. Su, L., Zhu, X., Wang, Z., Cheng, X.R., Wang, Y.Q., Yuan, C.S., Chen, Z.P., Ma, C.L., Li, F.F., Zhou, Q., Cui, Q.L.: In situ observation of multiple phase transitions in low-melting ionic liquid [BMIM][BF4] under high pressure up to 30 GPa. J. Phys. Chem. B 116, 2216–2222 (2012)

    Article  CAS  Google Scholar 

  26. Shigemi, M., Takekiyo, T., Abe, H., Hamaya, N., Yoshimura, Y.: Pressure-induced solidification of 1-butyl-3-methylimidazolium tetrafluoroborate. J. Solution Chem. 43, 1614–1624 (2014)

    Article  CAS  Google Scholar 

  27. Ribeiro, M.C., Pádua, A.A., Gomes, M.F.C.: Glass transition of ionic liquids under high pressure. J. Chem. Phys. 140, 244514 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (No. 21273206 and No. 41322028), Program for New Century Excellent Talents in University (No. 1209090) and Key Research Project of Higher Education of Henan Province (No. 15A140016 and No. 2010GGJS-110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijun Huang, Lei Su or Guoqiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, L., Zhu, X. et al. Ionic Liquid: A Good Pressure Transmitting Medium. J Solution Chem 46, 3–10 (2017). https://doi.org/10.1007/s10953-016-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0546-y

Keywords

Navigation