Skip to main content
Log in

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (V): Conductivity and Ionic Dissociation of Vanadyl Sulfate in Aqueous Solution in the 278.15–318.15 K Temperature Range

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Precise measurements of electrical conductivities of aqueous VOSO4 solutions at various molalities were performed from 278.15 to 318.15 K in 5 K intervals. In terms of Fuoss’s equation and Shedlovsky’s equation, the limiting molar conductance, Λ 0, and the dissociation constant, K d, of the ion-pair [VOSO4]0 were determined. From an empirical equation for the temperature dependence of dissociation constants, the thermodynamic functions for the dissociation process of the ion-pair [VOSO4]0 were calculated. It is discovered that the reaction for ion-pair dissociation is unfavorable under normal pressure and room temperature because the standard state dissociation Gibbs energy (ΔG 0) > 0. The calculated values of the dissociation entropy and the dissociation enthalpy are negative, indicating that the dissociation entropy opposes the dissociation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sum, E., Rychcik, M., Skyllas-Kazacos, M.: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985)

    Article  CAS  Google Scholar 

  2. Kazacos, M., Cheng, M., Skyllas-Kazacos, M.: Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. 20, 463–467 (1990)

    Article  CAS  Google Scholar 

  3. Skyllas-kazacos, M., Rychick, M., Robins, R.: All-vanadium redox battery. US Patent No. 4, 567–786 (1986)

  4. Rahman, F., Skyllas-Kazacos, M.: Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources 72, 105–110 (1998)

    Article  CAS  Google Scholar 

  5. Oriji, G., Katayama, Y., Miura, T.: Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochim. Acta 49, 3091–3095 (2004)

    Article  CAS  Google Scholar 

  6. Oriji, G., Katayama, Y., Miura, T.: Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods. J. Power Sources 139, 321–324 (2005)

    Article  CAS  Google Scholar 

  7. Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)

    Article  CAS  Google Scholar 

  8. Yang, J.Z., Liu, J.G., Tong, J., Guan, W., Fang, D.W., Yan, C.W.: Systematic study of the simple predictive approaches for thermodynamic and transport properties of multicomponent solutions. Ind. Eng. Chem. Res. 49, 7671–7677 (2010)

    Article  CAS  Google Scholar 

  9. Tomsic, M., Bester-Rogac, M., Jamnik, A., Neueder, R., Barthel, J.: Conductivity of magnesium sulfate in water from 5 to 35 °C and from infinite dilution to saturation. J. Solution Chem. 31, 19–31 (2002)

    Article  CAS  Google Scholar 

  10. Corti, H., Crovetto, R., Fernandez-Prini, R.: Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4 aqueous-solutions—a conductivity study. J. Solution Chem. 9, 617–625 (1980)

    Article  CAS  Google Scholar 

  11. Chen, Y.J., Zhang, H.H., Li, A.Q., Zhuo, K.L.: Conductivities for ZnSO4/MgSO4 + sucrose/trehalose plus water systems at 298.15 K. Fluid Phase Equilibr. 388, 78–83 (2015)

    Article  CAS  Google Scholar 

  12. Bester-Rogac, M.: Electrical conductivity of concentrated aqueous solutions of divalent metal sulfates. J. Chem. Eng. Data 53, 1355–1359 (2008)

    Article  CAS  Google Scholar 

  13. Bianchi, H.L., Dujovne, I., Fernández-Prini, R.: Comparison of electrolytic conductivity theories: performance of classical and new theories. J. Solution Chem. 29, 237–253 (2000)

    Article  CAS  Google Scholar 

  14. Rogac, M.B., Babic, V., Perger, T.M., Neueder, R., Barthel, J.: Conductometric study of ion association of divalent symmetric electrolytes: I. CoSO4, NiSO4, CoSO4 and ZnSO4 in water. J. Mol. Liq. 118, 111–118 (2005)

    Article  Google Scholar 

  15. Katayama, S.: Conductimetric determination of ion-association constants for calcium, cobalt, zinc, and cadmium sulfates in aqueous-solutions at various temperatures between 0 and 45 °C. J. Solution Chem. 5, 241–248 (1976)

    Article  CAS  Google Scholar 

  16. Liu, J.G., Xue, W.F., Qin, Y., Yan, C.W., Yang, J.Z.: Enthalpy of solution for anhydrous VOSO4 and estimated enthalpy of reaction for formation of the ion pair [VOSO4]0. J. Chem. Eng. Data 54, 1938–1941 (2009)

    Article  CAS  Google Scholar 

  17. Liu, J.G., Qin, Y., Yan, C.W.: Enthalpies of solution for VOSO4·2.76H2O(s) in water and in aqueous H2SO4. Acta Chim. Sinica 68, 722–726 (2010)

    CAS  Google Scholar 

  18. Qin, Y., Liu, J.G., Di, Y.Y., Yan, C.W., Zeng, C.L., Yang, J.Z.: Thermodynamic investigation of electrolytes of the vanadium redox flow battery (II): a study on low-temperature heat capacities and thermodynamic properties of VOSO4·2.63H2O(s). J. Chem. Eng. Data 55, 1276–1279 (2010)

    Article  CAS  Google Scholar 

  19. Qin, Y., Xue, W.F., Liu, J.G., Xu, W.G., Yan, C.W., Yang, J.Z.: The estimation of standard molar enthalpies of solution for VOSO4·nH2O(s) in water and in aqueous H2SO4. J. Solution Chem. 39, 857–863 (2010)

    Article  CAS  Google Scholar 

  20. Qin, Y., Liu, J.G., Yan, C.W.: Thermodynamic investigation of electrolytes of the vanadium redox flow battery (III): volumetric properties of aqueous VOSO4. J. Chem. Eng. Data 57, 102–105 (2012)

    Article  CAS  Google Scholar 

  21. Bester-Rogac, M., Klofutar, C., Rudan-Tasic, D.: Association of hydrophobic ions in aqueous solution: a conductometric study of symmetrical tetraalkylammonium cyclohexylsulfamates. J. Mol. Liq. 156, 82–88 (2010)

    Article  CAS  Google Scholar 

  22. Chen, H., Wang, X.H.: Brief discussion on the determination of sulfate radicals with gravimetric method and volumetric method. China Well Rock Salt 36, 41–42 (2005)

    Google Scholar 

  23. Huang, Z.Q.: Introduction of theory in electrolyte solution, revised edn. Science Press, Beijing (1983)

  24. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, vol. 3, pp. 283–330. Reinhold Pub, New York (1958)

    Google Scholar 

  25. Davies, C.W.: Ion association, pp. 9–31. Butterworths, London (1962)

    Google Scholar 

  26. Fuoss, R.M.: Solution of the conductance equation. J. Am. Chem. Soc. 57, 488–489 (1935)

    Article  CAS  Google Scholar 

  27. Shedlovsky, T.: The computation of ionization constants and limiting conductance values from conductivity measurements. J. Franklin Inst. 225, 739–743 (1938)

    Article  CAS  Google Scholar 

  28. Pitzer, K.S: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3. CRC Press, Boca Raton (1991)

  29. Strehlow, H., Wendt, H.: Fast ionic reactions in solution. IV. The formation of the vanadyl sulfate complex in aqueous solution. Inorg. Chem. 2, 6–10 (1963)

    Article  CAS  Google Scholar 

  30. Yang, J.Z., Men, D.Y., Liang, C.Y., Zhang, L.T., He, L.M., Sun, A.L.: Thermodynamics of the dissociation of amino-acid in mixed-solvents. 2. Glycine in 0.1 mole fraction of 1,2-propanediol water at 278.15–318.15 K. J. Phys. Chem. 93, 7248–7252 (1989)

    Article  CAS  Google Scholar 

  31. Yang, J.Z., Sun, B., Song, P.S.: Thermodynamics of ionic association 1—The standard association constant of the ion pair Li+B(OH) 4 . Thermochim. Acta 352, 69–74 (2000)

    Article  Google Scholar 

  32. Yang, J.Z., Zhang, R.B., Xue, H., Tian, P.: Thermodynamics of the ion pair [GaCl2]+ at temperatures from 278.15 to 318.15 K. J. Chem. Thermodyn. 34, 401–407 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (General Programs Numbers 21373009 and 21573257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Qin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XR., Qin, Y., Xu, WG. et al. Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (V): Conductivity and Ionic Dissociation of Vanadyl Sulfate in Aqueous Solution in the 278.15–318.15 K Temperature Range. J Solution Chem 45, 1879–1889 (2016). https://doi.org/10.1007/s10953-016-0545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0545-z

Keywords

Navigation