Skip to main content

Advertisement

Log in

A New Model of Excess Gibbs Energy for Systems Containing Polymer–Salt–Water Applicable to Aqueous Two Phase Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new thermodynamics model is presented for the phase equilibria calculations of 15 different aqueous two phase systems (ATPSs). The systems consist of water, polyethylene glycol and various salts (ammonium sulfate, sodium sulfate and sodium tartrate). The excess Gibbs energy model developed in the present study consists of three different terms. Long range and short range contributions and a combinatorial part of the excess Gibbs energy are used for obtaining the activity coefficient of species in the mixture. For the long range term, an extended Debye–Hückel equation is used and the Freed-FV equation is applied to calculate the combinatorial part of activity coefficient. For the short range contribution a new model based on the virial osmotic coefficient is developed to determine the equilibrium composition in ATPSs. Moreover, binary interaction parameters and calculated binodal curve data of each system are reported. The results show that the absolute average deviation percent (AAD%) of the model was less than 1% for the studied systems. Also, the phase equilibria calculations were done using UNIQUAC, UNIFAC, MNRTL–NRF and Modified Wilson equations to compare the results of the models with the results obtained by the new presented model. The results show that the new model can calculate the phase equilibria in ATPS systems better than most of the above equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beijerinck, M.: Über eine Eigentümlichkeit der löslichen Stärke. Centr-Bl. f. Bakter. u. Parasitenk 2, 698–699 (1896)

    Google Scholar 

  2. Albertsson, P.-Å.: Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes, and Cells in Aqueous Polymer Two-Phase Systems and their Use in Biochemical Analysis and Biotechnology. Wiley, New York (1986)

    Google Scholar 

  3. Kula, M.-R., Kroner, K.H., Hustedt, H.: Purification of enzymes by liquid–liquid extraction. In: Fiechter, A. (ed.) Reaction Engineering, pp. 73–118. Springer, Berlin (1982)

    Chapter  Google Scholar 

  4. Cordes, A., Flossdorf, J., Kula, M.R.: Affinity partitioning: development of mathematical model describing behavior of biomolecules in aqueous two-phase systems. Biotechnol. Bioeng. 30, 514–520 (1987)

    Article  CAS  Google Scholar 

  5. Liu, Y., Yu, Y., Chen, M., Xiao, X.: Advances in aqueous two-phase systems and applications in protein separation and purification. Can. J. Chem. Eng. Technol. 2, 1–7 (2011)

    Google Scholar 

  6. King, R.S., Blanch, H.W., Prausnitz, J.M.: Molecular thermodynamics of aqueous two-phase systems for bioseparations. AIChE J. 34, 1585–1594 (1988)

    Article  CAS  Google Scholar 

  7. Johansson, H.-O., Karlström, G., Tjerneld, F.: Separation of amino acids and peptides by temperature induced phase partitioning. Theoretical model for partitioning and experimental data. Bioseparation 7, 259–267 (1998)

    Article  CAS  Google Scholar 

  8. Sebastiao, M., Martel, P., Baptista, A., Petersen, S., Cabral, J., Aires-Barros, M.: Predicting the partition coefficients of a recombinant cutinase in polyethylene glycol/phosphate aqueous two-phase systems. Biotechnol. Bioeng. 56, 248–257 (1997)

    Article  CAS  Google Scholar 

  9. Baskir, J.N., Hatton, T.A., Suter, U.W.: Thermodynamics of the partitioning of biomaterials in two-phase aqueous polymer systems: comparison of lattice model to experimental data. J. Phys. Chem. 93, 2111–2122 (1989)

    Article  CAS  Google Scholar 

  10. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  11. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  12. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  13. Fredenslund, A., Gmehling, J., Michelsen, M.L., Rasmussen, P., Prausnitz, J.M.: Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Ind. Eng. Chem. Process Des. Dev. 16, 450–462 (1977)

    Article  CAS  Google Scholar 

  14. Haghtalab, A., Vera, J.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE J. 34, 803–813 (1988)

    Article  CAS  Google Scholar 

  15. Chen, C.C., Britt, H.I., Boston, J., Evans, L.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  16. Haghtalab, A., Asadollahi, M.A.: An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycol + dextran. Fluid Phase Equilibr. 171, 77–90 (2000)

    Article  CAS  Google Scholar 

  17. Sadeghi, R.: A modified Wilson model for the calculation of vapour + liquid equilibrium of aqueous polymer + salt solutions. J. Chem. Thermodyn. 37, 323–329 (2005)

    Article  CAS  Google Scholar 

  18. Xu, X., Madeira, P.P., Teixeira, J.A., Macedo, E.A.: A new modified Wilson equation for the calculation of vapor–liquid equilibrium of aqueous polymer solutions. Fluid Phase Equilibr. 213, 53–63 (2003)

    Article  CAS  Google Scholar 

  19. McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  20. Hill, T.L.: Theory of solutions. II. Osmotic pressure virial expansion and light scattering in two component solutions. J. Chem. Phys. 30, 93–97 (1959)

    Article  CAS  Google Scholar 

  21. Kabiri-Badr, M., Cabezas, H.: A thermodynamic model for the phase behavior of salt–polymer aqueous two-phase systems. Fluid Phase Equilibr. 115, 39–58 (1996)

    Article  CAS  Google Scholar 

  22. Perez, B., Malpiedi, L.P., Tubío, G., Nerli, B., de Alcântara Pessôa Filho, P.: Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts. J. Chem. Thermodyn. 56, 136–143 (2013)

    Article  CAS  Google Scholar 

  23. Großmann, C., Zhu, J., Maurer, G.: Phase equilibrium studies on aqueous two-phase systems containing amino acids and peptides. Fluid Phase Equilibr. 82, 275–282 (1993)

    Article  Google Scholar 

  24. Großmann, C., Tintinger, R., Zhu, J., Maurer, G.: Aqueous two-phase systems of poly (ethylene glycol) and dextran experimental results and modeling of thermodynamic properties. Fluid Phase Equilibr. 106, 111–138 (1995)

  25. Cabezas, H., O’Connell, J.: A fluctuation theory model of strong electrolytes. Fluid Phase Equilibr. 30, 213–220 (1986)

    Article  CAS  Google Scholar 

  26. Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics, Chap. 9. Cambridge University, Cambridge (1941)

    Google Scholar 

  27. Wu, Y.-T., Lin, D.-Q., Zhu, Z.-Q.: Thermodynamics of aqueous two-phase systems—The effect of polymer molecular weight on liquid–liquid equilibrium phase diagrams by the modified NRTL model. Fluid Phase Equilibr. 147, 25–43 (1998)

    Article  CAS  Google Scholar 

  28. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  29. Zafarani-Moattar, M.T., Sadeghi, R., Hamidi, A.A.: Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equilibr. 219, 149–155 (2004)

    Article  CAS  Google Scholar 

  30. Pazuki, G., Taghikhani, V., Vossoughi, M.: Modeling of aqueous biomolecules using a new free-volume group contribution model. Ind. Eng. Chem. Res. 48, 4109–4118 (2009)

    Article  CAS  Google Scholar 

  31. Ninni, L., Camargo, M., Meirelles, A.: Water activity in poly(ethylene glycol) aqueous solutions. Thermochim. Acta 328, 169–176 (1999)

    Article  CAS  Google Scholar 

  32. Guendouzi, M.E., Mounir, A., Dinane, A.: Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T = 298.15 K. J. Chem. Thermodyn. 35, 209–220 (2003)

    Article  Google Scholar 

  33. Zafarani-Moattar, M.T., Hamzehzadeh, S., Hosseinzadeh, S.: Phase diagrams for liquid–liquid equilibrium of ternary poly(ethylene glycol) + di-sodium tartrate aqueous system and vapor–liquid equilibrium of constituting binary aqueous systems at T = (298.15, 308.15, and 318.15) K: experiment and correlation. Fluid Phase Equilibr. 268, 142–152 (2008)

    Article  CAS  Google Scholar 

  34. Xu, X., Madeira, P.P., Macedo, E.A.: Representation of liquid–liquid equilibria for polymer–salt aqueous two-phase systems. Chem. Eng. Sci. 59, 1153–1159 (2004)

    Article  CAS  Google Scholar 

  35. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Courier Corporation, Chelmsford (2002)

    Google Scholar 

  36. Winkelman, J., Kraai, G., Heeres, H.: Binary, ternary and quaternary liquid–liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures. Fluid Phase Equilibr. 284, 71–79 (2009)

    Article  CAS  Google Scholar 

  37. Haghtalab, A., Joda, M.: Modification of NRTL–NRF model for computation of liquid–liquid equilibria in aqueous two-phase polymer–salt systems. Fluid Phase Equilibr. 278, 20–26 (2009)

    Article  CAS  Google Scholar 

  38. Alves, J.G., Brenneisen, J., Ninni, L., Meirelles, A.J., Maurer, G.: Aqueous two-phase systems of poly (ethylene glycol) and sodium citrate: experimental results and modeling. J. Chem. Eng. Data 53, 1587–1594 (2008)

    Article  CAS  Google Scholar 

  39. Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part 1. Experiment and correlation using extended UNIQUAC equation. Fluid Phase Equilibr. 63, 157–171 (1991)

    Article  CAS  Google Scholar 

  40. Snyder, S.M., Cole, K.D., Szlag, D.C.: Phase compositions, viscosities, and densities for aqueous two-phase systems composed of polyethylene glycol and various salts at 25 °C. J. Chem. Eng. Data 37, 268–274 (1992)

    Article  CAS  Google Scholar 

  41. Martins, J.O.P., de Oliveira, F.O.C., dos Reis Coimbra, J.S., da Silva, L.H.M., da Silva, M.D.C.H., do Nascimento, I.S.B.: Equilibrium phase behavior for ternary mixtures of poly(ethylene) glycol 6000 + water + sulfate salts at different temperatures. J. Chem. Eng. Data 53, 2441–2443 (2008)

    Article  CAS  Google Scholar 

  42. Haghtalab, A., Mokhtarani, B.: The new experimental data and a new thermodynamic model based on group contribution for correlation liquid–liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2HPO4). Fluid Phase Equilibr. 215, 151–161 (2004)

    Article  CAS  Google Scholar 

  43. Malpiedi, L.P., Fernández, C., Picó, G., Nerli, B.: Liquid–liquid equilibrium phase diagrams of polyethyleneglycol + sodium tartrate + water two-phase systems. J. Chem. Eng. Data 53, 1175–1178 (2008)

    Article  Google Scholar 

  44. Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part 2. Correlation and prediction using extended unifac equation. Fluid Phase Equilibr. 63, 173–182 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bakhshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobalegholeslam, P., Bakhshi, H. A New Model of Excess Gibbs Energy for Systems Containing Polymer–Salt–Water Applicable to Aqueous Two Phase Systems. J Solution Chem 45, 1826–1841 (2016). https://doi.org/10.1007/s10953-016-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0544-0

Keywords

Navigation