Skip to main content
Log in

Theoretical and Experimental Solubility of Celecoxib in Binary and Ternary Solvents of Polyethylene Glycols 200, 400 or 600 with Ethanol and Water at 298.2 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubilities of celecoxib in the binary and ternary mixtures of polyethylene glycols 200, 400 or 600 with ethanol and water (185 data points) at 298.2 K were determined and mathematically represented by cosolvency models. The obtained overall mean relative deviations (OMRDs) for fitting the solubility data of celecoxib in binary and ternary mixtures using the Jouyban–Acree model for the binary and ternary data sets are 14.7 and 25.8% respectively, and the OMRD values for predicting the solubility data of celecoxib by the trained versions of the Jouyban–Acree model for the binary and ternary data sets of PEG 200, 400 and 600 with ethanol and water are 18.2, 21.3 and 37.9%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagabandi, V., Chandragiri, A.K., Thota, S., Katakam, P.: Enhancement of dissolution rate of naproxen by lipid based solid dispersions. J. Pharm. Sci. Res. 6, 78–82 (2014)

    Google Scholar 

  2. Balakrishnan, A., Rege, B.D., Amidon, G.L., Polli, J.E.: Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J. Pharm. Sci. 93, 2064–2075 (2014)

    Article  Google Scholar 

  3. Soltanpour, Sh., Bastami, Z.: Thermodynamic solubility of piroxicam in propylene glycol + water mixtures at 298.2–323.2 K—data report and modeling. J. Serb. Chem. Soc. 79, 1–12 (2014)

    Article  Google Scholar 

  4. Soltanpour, Sh., Jouyban, A.: Solubility of Acetaminophen and ibuprofen in binary and ternary mixtures of polyethylene glycols 200 and 400, propylene glycol, and water at 25 °C. Chem. Eng. Commun. 12, 1606–1620 (2014)

    Article  Google Scholar 

  5. Soltanpour, Sh., Jafari, B., Barzegar-Jalali, M., Jouyban, A.: Solubility of glibenclamide in the aqueous mixtures of polyethylene glycol 400, propylene glycol and N-methyl-pyrrolidone at 298.2 K. J. Drug Deliv. Sci. Technol. 24, 111–115 (2014)

    Article  CAS  Google Scholar 

  6. Lee, B.J., Lee, J.R.: Enhancement of solubility and dissolution rate of poorly water-soluble naproxen by complexation with 2-hydroxypropyl-cyclodextrin. Arch. Pharm. Res. 18, 22–26 (1995)

    Article  CAS  Google Scholar 

  7. Nokhodchi, A., Javadzadeh, Y., Siahi-Shadbad, M.R., Barzegar-Jalali, M.: The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J. Pharm. Pharm. Sci. 8, 18–25 (2005)

    CAS  Google Scholar 

  8. Cavallari, C., Luppi, B., Di Pietra, A.M., Rodriguez, L., Fini, A.: Enhanced release of indomethacin from PVP/stearic acid microcapsules prepared coupling co-freeze-drying and ultrasound assisted spray-congealing process. Pharm. Res. 24, 521–529 (2007)

    Article  CAS  Google Scholar 

  9. Valizadeh, H., Nokhodchi, A., Qarakhani, N., Zakeri-Milani, P., Azarmi, S., Hassanzadeh, D., Löbenberg, R.: Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit® E100. Drug Dev. Ind. Pharm. 30, 303–317 (2004)

    Article  CAS  Google Scholar 

  10. Preechagoon, D., Udomprateep, A., Manwiwattanagul, G.: Improved dissolution rate of poorly soluble drug by incorporation of buffers. Drug Dev. Ind. Pharm. 26, 891–894 (2000)

    Article  CAS  Google Scholar 

  11. Bandi, N., Wei, W., Roberts, C.B., Kotra, L.P., Kompella, U.B.: Preparation of budesonide– and indomethacin–hydroxypropyl-beta-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. Fed. Pharm. Sci. 23, 159–168 (2004)

    Article  CAS  Google Scholar 

  12. Bastami, Z., Soltanpour, Sh, Panahi-Azar, V., Jouyban, A.: Solubility of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols 400 or 600, propylene glycol and water at 298.2 K—Experimental data and modeling. J. Serb. Chem. Soc. 78, 1–15 (2013)

    Article  Google Scholar 

  13. Soltanpour, Sh., Bastami, Z., Sadeghilar, Sh, Kouhestani, M., Pouya, F., Jouyban, A.: Solubility of clonazepam and diazepam in polyethylene glycol 200, propylene glycol, N-methyl pyrrolidone, ethanol, and water at (298.2 to 318.2) K and in binary and ternary mixtures of polyethylene glycol 200, propylene glycol, and water at 298.2 K. J. Chem. Eng. Data 58, 307–314 (2013)

    Article  CAS  Google Scholar 

  14. Soltanpour, Sh, Barzegar-Jalali, M., Jouyban, A.: Solubility of pioglitazone hydrochloride in ethanol, N-methyl pyrrolidone, polyethylene glycols and water mixtures at 298.20 °K. J. Pharm. Sci. 19, 440–445 (2011)

    CAS  Google Scholar 

  15. Seedher, N., Bhatia, S.: Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech 4, 1–9 (2003)

    Article  Google Scholar 

  16. Rawata, S., Jainb, S.K.: Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 57, 263–267 (2004)

    Article  Google Scholar 

  17. Gupta, P., Kakumanu, V.K., Bansal, A.K.: Stability and solubility of celecoxib–PVP amorphous dispersions: a molecular perspective. Pharm. Res. 21, 1762–1769 (2004)

    Article  CAS  Google Scholar 

  18. Liua, Y., Suna, Ch., Haob, Y., Jianga, T., Zhenga, L., Wanga, S.: Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. J. Pharm. Pharm. Sci. 13, 589–606 (2010)

    Article  Google Scholar 

  19. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixture. J. Pharm. Pharm. Sci. 11, 32–58 (2008)

    Article  CAS  Google Scholar 

  20. Acree Jr., W.E.: Mathematical representation of thermodynamic properties. Part II. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich–Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim. Acta 198, 71–79 (1992)

    Article  CAS  Google Scholar 

  21. Jouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B.J., Acree Jr., W.E.: Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. Int. J. Pharm. 171, 93–101 (1999)

    Article  Google Scholar 

  22. Jouyban, A., Acree Jr., W.E.: In silico prediction of drug solubility in water–ethanol mixtures using Jouyban–Acree model. J. Pharm. Pharm. Sci. 9, 262–269 (2006)

    CAS  Google Scholar 

  23. Jouyban, A., Acree Jr., W.E.: Prediction of drug solubility in ethanol–ethyl acetate mixtures at various temperatures using the Jouyba–Acree model. J. Drug Deliv. Sci. Technol. 17, 159–160 (2007)

    Article  CAS  Google Scholar 

  24. Jouyban-Gharamaleki, A., Acree Jr., W.E.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)

    Article  CAS  Google Scholar 

  25. Jouyban, A., Fakhree, M.A.A., Mirzaei, Sh, Ghafourian, T., Soltanpour, Sh, Nokhodchi, A.: Solubility prediction of paracetamol in water–glycerol mixtures at 25 and 30 °C using the Jouyban–Acree model. Asian J. Chem. 21, 7249–7253 (2009)

    CAS  Google Scholar 

  26. Jouyban, A., Shokri, J., Barzegar-Jalali, M., Hassanzadeh, D., Acree Jr., W.E., Ghafourian, T., Nokhodchi, A.: Solubility of chlordiazepoxide, diazepam, and lorazepam in ethanol + water mixtures at 303.2 K. J. Chem. Eng. Data 54, 2142–2145 (2009)

    Article  CAS  Google Scholar 

  27. Sardari, F., Jouyban, A.: Solubility of 3-ethyl-5-methyl-(4RS)-2-((2-aminoethoxy)methyl)-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylate monobenzenesulfonate (amlodipine besylate) in ethanol + water and propane-1,2-diol + water mixtures at various temperatures. J. Chem. Eng. Data 57, 2848–2854 (2012)

    Article  CAS  Google Scholar 

  28. Eghrary, Sh, Zarghami, R., Martinez, F., Jouyban, A.: Solubility of 2-butyl-3-benzofuranyl 4-(2-(diethylamino)ethoxy)-3,5-diiodophenyl ketone hydrochloride (amiodarone HCl) in ethanol + water and N-methyl-2-pyrrolidone + water mixtures at various temperatures. J. Chem. Eng. Data 57, 1544–1550 (2012)

    Article  CAS  Google Scholar 

  29. Moffat, A.C.: Clarke’s Analysis of Drug and Poisons. Pharmaceutical Press, London (2004)

    Google Scholar 

  30. Koleske, J.V.: Paint and Coating Testing Manual. 14th edn. Gardner–Sward Handbook (Chap. 35). ASTM, Philadelphia (1995)

  31. Amiran, J., Nicolosi, V., Bergin, S.D., Khan, U., Lyons, P.E., Coleman, J.N.: High quality dispersions of functionalized single walled nanotubes at high concentration. J. Phys. Chem. C 112, 3519–3524 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is resulted from a Pharm. D thesis with the proposal number of (A-10-387-6). The authors are grateful for financial support from Zanjan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla Soltanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanpour, S., Mirzaei, A. Theoretical and Experimental Solubility of Celecoxib in Binary and Ternary Solvents of Polyethylene Glycols 200, 400 or 600 with Ethanol and Water at 298.2 K. J Solution Chem 45, 1797–1810 (2016). https://doi.org/10.1007/s10953-016-0543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0543-1

Keywords

Navigation