Abstract
Potentiometric and spectroscopic techniques are used to study the interaction of N′-[1-(2-hydroxyphenyl)ethylidene]Isonicotinohydrazide (HpEH) with trivalent Pr, Nd, Gd, Tb, and Ho ions. Potentiometric titrations, carried out keeping the Ln3+/HpEH molar ratios at 1:2 and 1:4 at different temperature and a constant ionic strength of 0.1 mol·dm−3 KNO3 in aqueous dioxane (40%) medium, show two protons of the ligand in equilibrium and complex formation of 1:1, 1:2 and 1:3 Ln3+/HpEH stoichiometry. The conditional stability constants of the Ln3+–HpEH complexes increase in the order: Pr < Nd < Gd < Tb < Ho. The negative values of the standard state thermodynamic parameters (ΔG°, ΔH°, and ΔS°) associated with both protonation and complexation reactions for all the systems show the reactions are spontaneous, exothermic and of unfavorable entropy. Changes in the absorption bands indicate interactions of HpEH and Ln3+. Photoluminescence study of the Tb3+ and HpEH complex reveals that HpEH is florescent and has no sensitizing effect on Tb3+ luminescence in ethanol, while in the isolated solid Tb3+–HpEH complex the luminescence intensity was found to be greatly sensitized. The synthesized Tb3+–HpEH complex, characterized on the basis of elemental analysis, magnetic susceptibility, molar conductivity, thermal analysis and spectral measurements is paramagnetic, acts as a 2:1 electrolyte and is of 1:3 Ln3+/HpEH stoichiometry.
Graphical Abstract
Similar content being viewed by others
References
Sevim, R., Güniz, K.S.: Biological activities of hydrazone derivatives. Molecules 12, 1910–1939 (2007)
Puntus, L., Zhuravlev, K., Lyssenko, K., Antipin, M., Pekareva, I.: Luminescence and structural properties of lanthanide complexes of Schiff bases derived from pyridoxal and amino acids. Dalton Trans. 4079–4088 (2007)
Buss, J.L., Neuzil, J., Ponka, P.: Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs. Arch. Biochem. Biophys. 421, 1–9 (2004)
Shabani, F., Ghammamy, S., Jahazi, A., Siavoshifar, F.: Anti-tumor activity of N′[(E)-1-(2-hydroxyphenyl) methylidene], N′-[(E)-2-phenylethylidene], N′[(E,2E)-3-phenyl-2-propenylidene], and N′[(E)ethylidene] isonicotinohydrazide on K562 and Jurkat cell lines. J. Young Pharm. 2, 399–402 (2010)
Gilani, S.J., Khan, S.A., Alami, O., Singh, V., Arora, A.: Supplementary material to thiazolidin-4-one, azetidin-2-one and 1,3,4-oxadiazole derivatives of isonicotinic acid hydrazide: synthesis and their biological evaluation. J. Serb. Chem. Soc. 76, S1–S9 (2011)
Sriram, D., Yogeeswari, P., Madhu, K.: Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones. Bioorg. Med. Chem. Lett. 15, 4502–4505 (2005)
Ellis, S., Kalinowski, D.S., Leotta, L., Huang, M.L.H., Jelfs, P., Sintchenko, V., Richardson, D.R., Triccas, J.A.: Potent antimycobacterial activity of the pyridoxal isonicotinoyl hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: a lipophilic transport vehicle for isonicotinic acid hydrazide. Molec. Pharm. 85, 269–278 (2013)
Katerina, H., Kovarikova, P., Bendova, P., Haskova, P., Mackova, E., Stariat, J., Vavrova, A., Vavrova, K., Simunek, T.: Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis. Chem. Res. Toxicol. 24, 290–302 (2011)
Andrew, T.F., Peng, D., Yang, W., Franz, K.J.: Characterization of a photoswitching chelator with light-modulated geometric, electronic, and metal-binding properties. Inorg. Chem. 53, 1397–1405 (2014)
Gudasi, K.B., Shenoy, R.V., Vadavi, R.S., Patil, M.S., Patil, S.A.: Synthesis, characterisation and biological evaluation of lanthanide3+ complexes with 3-acetylcoumarin-o-aminobenzoylhydrazone (ACAB). Chem. Pharm. Bull. 53, 1077–1082 (2005)
Nicholson, K.N., Wood, S.A.: Aqueous geochemistry of rare earth elements and yttrium. XII: Potentiometric stability constant determination of bis-tris complexes with La, Nd, Eu, Gd, Yb, Dy, Er, Lu, Y. J. Solution Chem. 31, 703–717 (2002)
Cozzi, P.G.: Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410–421 (2004)
Wang, M., Yang, Z., Li, Y., Li, H.: Lanthanide complex of 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldehyde-(isonicotinoyl) hydrazone: crystal structure and DNA-binding properties. J. Coord. Chem. 64, 2974–2983 (2011)
Meenatchi, V., Muthu, K., Rajasekar, M., Meenakshisundaram, S.P.: Synthesis, structure, spectral, thermal and first-order molecular hyperpolarizability of 4-benzoylpyridine isonicotinyl hydrazone monohydrate single crystals. Spectrochim. Acta A 124, 423–428 (2014)
Budimir, A., Benković, T., Tomišić, V., Gojmerac Ivšić, A., Galić, N.: Hydrolysis and extraction properties of aroylhydrazones derived from nicotinic acid hydrazide. J. Solution Chem. 42, 1935–1948 (2013)
Mittal, P., Uma, V., Ojha, K.G.: Potentiometric and thermodynamic studies of Schiff base hydrazone metal complexes. Der Chem. Sin. 1, 146–156 (2010)
Ogden, M., Hoch, C., Sinkov, S., Meier, G.P., Lumetta, G., Nash, K.: Complexation studies of bidentate heterocyclic N-donor ligands with Nd3+ and Am3+. J. Solution Chem. 40, 1874–1888 (2011)
Pardeshi, R.K., Palaskar, N.G., Chondhekar, T.K.: Potentiometric study of the lanthanide3+ ion complexes with some Schiff bases. J. Indian Chem. Soc. 79, 958–959 (2002)
Mahmoud, F., Eid, M.M.: Thermodynamic behavior and stability constants of lanthanides–Schiff base complexes in mixed aqueous solvents. Struc. Chem. 23, 1723–1728 (2012)
El-Sherif, A.A., Aljahdali, M.S.: Review: protonation, complex-formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. J. Coord. Chem. 66, 3423–3468 (2013)
El-Bindary, A.A., Shoair, A.F., El-Sonbati, A.Z., Diab, M.A., Abdo, E.E.: Geometrical structure, molecular docking and potentiometric studies of Schiff base ligand. J. Mol. Liq. 212, 576–584 (2015)
Bernardo, P.D., Melchior, A., Tolazzi, M., Zanonato, P.L.: Thermodynamics of lanthanide3+ complexation in non aqueous solvents. Coord. Chem. Rev. 256, 1279–1280 (2012)
Sigel, H., Martin, R.B.: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82, 385–426 (1982)
Mato-Iglesias, M., Rodríguez-Blas, T., Platas-Iglesias, C., Starck, M., Kadjane, P., Ziessel, R., Charbonnière, L.: Solution structure and dynamics, stability, and NIR emission properties of lanthanide complexes with a carboxylated bispyrazolylpyridyl ligand. Inorg. Chem. 48, 1507–1518 (2009)
Bunzli, J.-C.G.: lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010)
Brunet, E., Juanes, O., Rodriguez-Ubis, J.C.: supramolecularly organized lanthanide complexes for efficient metal excitation and luminescence as sensors in organic and biological applications. Current Chem. Bio. 1, 11–39 (2007)
Ferrand, A.-C., Imbert, D., Chauvin, A.-S., Vandevyver, C.D.B., Bünzli, J.-C.G.: Non-cytotoxic, bifunctional EuIII and TbIII luminescent macrocyclic complexes for luminescence resonant energy-transfer experiments. Chem. A Eur. J. 13, 8678–8687 (2007)
Svetlana, W., Eliseevaa, V., Bunzli, J.-C.G.: Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)
Jones, G., Vullev, V.I.: Medium effects on the photophysical properties of terbium3+ complexes with pyridine-2, 6-dicarboxylate. Photochem. Photobiol. Sci. 1, 925–933 (2002)
Varam, Y., Lonibala, R.K.: Studies on the complexation of N′-[1-(2,4dihydroxyphenyl)ethylidene]isonicotinohydrazide with lanthanide ions. J. Chem. Eng. Data 56, 3552–3560 (2011)
Sharmeli, Y., Lonibala, R.K.: Thermodynamics of the complexation of N(pyridin-2-ylmethylene)isonicotinohydrazide with lighter lanthanides. J. Chem. Eng. Data 54, 28–34 (2009)
Bjerrum, J.: Metal Ammine Formation in Aqueous Solution. P. Hasse and Sons, Copenhagen (1941)
Irving, H.M., Rossotti, H.S.: The calculation of formation curves of metal complexes from pH-titration curves in mixed solvents. J. Chem. Soc. 30A, 2904–2910 (1954)
Irving, H.M., Rossotti, H.S.: Methods for computing successive stability constants from experimental formation curves. J. Chem. Soc. 3397–3405 (1953)
Jeffery, G.H., Bassett, J., Mendham, J., Denny, R.C.: Vogel’s Textbook of Quantitative Analysis. Revised 5th edn. Longmans, Essex (1994)
Welcher, F.J.: The Analytical Uses of Ethylenediaminetetraacetic Acid. Von Nostrand, Princeton, NJ (1965)
Choppin, G.R., Fugate, G.A.: Applications of the Judd–Ofelt theory in Ln3− chelidamic acid complexation. Mol. Phys. 101, 935–939 (2003)
Geary, W.J.: The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)
El-Sherbiny, M.F.: Potentiometric and thermodynamic studies of 2-thioxothiazolidin-4-one and its metal complexes. Chem. Pap. 59, 332–335 (2005)
Narang, K.K., Rao, T.R., Shrestha, S., Shrestha, S.: Synthesis, characterization, thermal and electrical properties of yttrium3+ and lanthanide complexes of salicylaldehyde benzoyl hydrazone. Synth. React. Met.-Org. Chem. 30, 931–954 (2000)
Jagst, A., Sanchez, A., Vazquez-Lopez, E.M., Abram, U.: Controlled ligand deprotonation in lanthanide chelates with asymmetric semicarbazone/benzoylhydrazone or semicarbazone/thiosemicarbazone coordination spheres I. Inorg. Chem. 44, 5739–5744 (2005)
Sekhon, B.S., Chopra, S.L.: A thermodynamic study of the complexation reaction for some amino acids with cerium3+ and yttrium3+. Thermochim. Acta 7, 151–157 (1973)
Sahoo, S., Rati, K.B., Minati, B., Kanungo, B.K.: Spectroscopic and potentiometric study of 2,3-dihydroxybenzoic acid and its complexation with La3+ ion. Acta Chim. Slov. 55, 243–247 (2008)
Zhang, J., Badger, P.D., Geib, S.J., Petoud, S.: Synthesis and structural properties of lanthanide complexes formed with tropolonate ligands. Inorg. Chem. 46, 6473–6482 (2007)
Regueiro-Figueroa, M., Esteban-Gómez, D., de Blas, A., Rodríguez-Blas, T., Platas-Iglesias, C.: Understanding stability trends along the lanthanide series. Chem. A Eur. J. 20, 3974–3981 (2014)
Tian, G., Martin, L.R., Rao, L.: Thermodynamic, spectroscopic, and computational studies of lanthanide complexation with diethylenetriaminepentaacetic acid: temperature effect and coordination modes. Inorg. Chem. 50, 3087–3096 (2011)
Masoud, M.S., Akelah, A., Kandil, S.S.: Spectrophotometric and potentiometric studies of some multidentate Schiff bases and their complexes. Indian J. Chem. 24A, 855–859 (1985)
Cordes, E.H., Jencks, K.P.: The mechanism of hydrolysis of Schiff bases derived from aliphatic amines. J. Am. Chem. Soc. 85, 2843–2848 (1963)
Sahoo, S.K., Baral, M., Kanungo, B.K.: Potentiometric and spectrophotometric studies on the binding ability of a flexible tripodal catecholamine ligand toward iron3+. J. Chem. Eng. Data 56, 2739–2742 (2011)
Liu, L., Tian, G., Rao, L.: Effect of solvation on complexation of neodymium3+ with nitrate in an ionic liquid (BumimTf2N) in comparison with water. Solvent Extr. Ion Exch. 31, 384–400 (2013)
Bayes, G.S., Raut, S.S., Patil, V.R., Lokhande, R.S.: Formation of diazepam–lanthanides III complexes in the 50–50 volume % ethanol–water solvent system and study of the effect of temperature on the complex formation constants. J. Solution Chem. 41, 241–248 (2012)
Comuzzi, C., Bernardo, P.D., Portanova, R., Tolazzi, M., Zanonato, P.: Affinity of lanthanide3+ ions for oxygen- and mixed oxygen–nitrogen-donor ligands in dimethylsulfoxide: a thermodynamic and spectroscopic investigation. Polyhedron 21, 1385–1391 (2002)
Silverstain, R.M., Bassler, G.C., Morril, T.C.: Spectrometric Identification of Organic Compounds, 4th edn. Wiley, New York (1981). Chap. 6
Fu, Y., Zhang, J., Lv, Y., Cao, W.: The study on the effect and mechanism of the second ligands on the luminescence properties of terbium complexes. Spectrochim. Acta Part A 70, 646–650 (2008)
Mohanan, K., Athira, C.J., Sujamol, M.S.: Synthesis, spectroscopic characterization and thermal studies of some lanthanide3+ nitrate complexes with a hydrazo derivative of 4-aminoantipyrine. J. Rare Earths 27, 705–710 (2009)
Khalil, M.M., El-Deeb, M.M., Mahmoud, R.K.: Equilibrium studies of binary systems involving lanthanide and actinide metal ions and some selected aliphatic and aromatic monohydroxamic acids. J. Chem. Eng. Data 52, 1571–1579 (2007)
Karraker, D.G.: The hypersensitive transitions of hydrated Nd3+, Ho3+, and Er3+ ions. Inorg. Chem. 7, 473–478 (1968)
Choppin, G.R., Fugate, G.A.: Applications of the Judd–Ofelt theory in lanthanide–chelidamic acid complexation. Mol. Phys. 101, 935–939 (2003)
Rao, L., Tian, G.: Complexation of lanthanides with nitrate at variable temperature: thermodynamics and coordination modes. Inorg. Chem. 48, 964–970 (2009)
Ansari, A.A., Ilmi, R., Iftikhar, K.: Hypersensitivity in the 4f–4f absorption spectra of tris(acetylacetonato)neodymium3+ complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions. J. Lumin. 132, 51–60 (2012)
Jørgensen, K., Judd, B.R.: Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281–290 (1964)
Ilmi, R., Iftikhar, K.: Luminescent nine-coordinate lanthanide complexes derived from fluorinated b-diketone and 2,4,6-tris(2-pyridyl)-1,3,5-triazine. J. Coord. Chem. 65, 403–419 (2012)
Kumar, R., Makrandi, J.K., Singh, I., Khatkar, S.P.: Synthesis, characterizations and luminescent properties of terbium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenone. Spectrochim. Acta, Part A 69, 1119–1124 (2008)
Leonard, J.P., Gunnlaugsson, T.: Luminescent Eu3+ and Tb3+ complexes: Developing lanthanide luminescent-based devices. J. Fluores. 15, 585–595 (2005)
Gutierrez, F., Tedeschi, C., Maron, L., Daudey, J.-P., Poteau, R., Azema, J., Tisnès, P., Picard, C.: Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans. 1334–1347 (2004)
Tobita, S., Arakawa, M., Tanaka, I.: Electronic relaxation processes of rare earth chelates of benzoyltrifluoroacetone. J. Phys. Chem. 88, 2697–2702 (1984)
Tobita, S., Arakawa, M., Tanaka, I.: The paramagnetic metal effect on the ligand localized T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J. Phys. Chem. 89, 5649–5654 (1985)
Stein, G., Wurzburg, E.: Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions. J. Chem. Phys. 62, 208–213 (1975)
Ermolaev, V.L., Sveshnikova, E.B.: A Mechanism of nonradiative transitions in lanthanide ions and the number of water molecules in their first coordination sphere. Opt. Spectrosc. 95, 908–913 (2003)
Salama, S., Richardson, F.S.: Influence of ligand N–H oscillators versus water O–H oscillators on the luminescence decay constants of terbiumIII complexes in aqueous solution. J. Phys. Chem. 84, 512–517 (1980)
Haas, Y., Stein, G.: Radiative and nonradiative pathways in solution: excited states of the europium 3+ ion. J. Phys. Chem. 76, 1093–1110 (1973)
Zhao, G.-J., Liu, J.-Y., Zhou, L.-C., Han, K.-L.: Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J. Phys. Chem. B. 111, 8940–8945 (2007)
Choppin, G.R., Strazik, W.F.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4, 1250–1254 (1965)
Hemmilä, I., Mukkala, V.-M., Latva, M., Kiilholma, P.: Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. J. Biochem. Biophys. Methods 26, 283–290 (1993)
de Faria, E.H., Nassar, E.J., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Rives, V., Calefi, P.S.: New highly luminescent hybrid materials: terbium pyridine picolinate covalently grafted on kaolinite. Appl. Mater. Interfac. 3, 1311–1318 (2011)
Gassner, A.-L., Duhot, C., Bunzli, J.-C.G., Chauvin, A.-S.: Remarkable tuning of the photophysical properties of bifunctional lanthanide tris(dipicolinates) and its consequence on the design of bioprobes. Inorg. Chem. 47, 7802–7812 (2008)
Gu, G.-L., Tang, R.-R., Zheng, Y.-H., Shi, X.-M.: Synthesis, characterization and fluorescence properties of novel pyridine dicarboxylic acid derivatives and corresponding Tb3+ complexes. Spectrochim. Acta Part A 71, 209–214 (2008)
Yan, B., Wang, Q.-M.: Molecular fabrication and photoluminescence of novel terbium co-polymer using 4-vinyl pyridine as the efficient second ligand. Opt. Mat. 30, 617–621 (2007)
Jones, G., Vullev, V.I.: Medium effects on the photophysical properties of terbium3+ complexes with pyridine-2,6-dicarboxylate. Photochem. Photobiol. Sci. 1, 925–933 (2002)
Chen, H., Archer, R.D.: Synthesis and characterization of lanthanide3+ (La, Gd, Yb, Y) disalicylidene-1,2-phenylenediamine (Hzdsp) Schiff-base complexes. Inorg. Chem. 33, 5195–5202 (1994)
Chakraborty, J., Thakurta, S., Pilet, G., Ziessel, R.F., Charbonnière, L.J., Mitra, S.: Syntheses, crystal structures and photophysical properties of two doubly μ-phenoxo-bridged LnIII (Ln = Pr, Nd) homodinuclear Schiff base complexes. Eur. J. Inorg. Chem. 3993–4000 (2009)
Braibanti, A., Dallavale, F., Pellingheli, M.A.: The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 7, 1430–1433 (1968)
Makode, J.T., Yaul, A.R., Bhadange, S.G., Aswar, A.S.: Physicochemical characterization, thermal, and electrical conductivity studies of some transition metal complexes of bis-chelating Schiff base. Russ. J. Inorg. Chem. 54, 1372–1377 (2009)
Rao, N.R.: Chemical Application of Infrared Spectroscopy, pp. 258–265. Academic Press, New York (1963)
Silverstain, R.M., Bassler, G.M., Morril, T.C.: Spectrometric Identification of Organic Compounds, 4th edn. Wiley, New York (1981). Chap. 3
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York (1986)
Tai, X., Wang, H., Sun, X.: Synthesis and spectral characterization of methyl-2-pyridyl ketone benzoyl hydrazone and its complexes with rare earth nitrates. Spectros. Lett. 38, 497–594 (2005)
Naganao, K., Kinoshita, H., Hirakawa, A.: Metal complexes of isonicotinoyltydrazine and related compounds. IV. Composition formulae and infrared absorption spectra of metal complex crystals of isonicotinoylhydrazine and related compounds. Chem. Pharm. Bull. 12, 1198–1206 (1964)
Prasad, S., Agarwal, R.K.: Synthesis, physico-chemical and biological properties of complexes of cobalt(II) derived from hydrazones of isonicotinic acid hydrazide. J. Korean Chem. Soc. 53, 17–26 (2009)
Burns, G.R.: Metal complexes of thiocarbohydrazide. Inorg. Chem. 7, 277–283 (1968)
Mohanan, K., Devi, S.N.: Synthesis characterisation, thermal, stability, reactivity, antimicrobial properties of some novel lanthanides(III) complexes of 2-(N-salicylideneamino)-3-carboxyethyl 4,5,6,7 tetrahydrobenzo[b]tiopene. Russ. J. Coord. Chem. 32, 600–809 (2006)
Al-Sogair, F.M., Operschall, B.P., Sigel, A., Sigel, H., Schnabl, J., Sigel, R.K.O.: Probing the metal-ion-binding strength of the hydroxyl group. Chem. Rev. 111, 4964–5003 (2011)
Carcelli, M., Lanelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C., Tegoni, M.: Synthesis and characterization of new lanthanide complexes with hexadentate hydrazonic ligands. Inorg. Chim. Acta 358, 903–910 (2005)
Acknowledgements
The authors acknowledge Central Drug Research Institute, Lucknow for recording NMR and mass spectra of the ligand and IIT Bombay for C H N analysis of the ligand and the complex.
Funding
Special thanks to University Grants Commission, New Delhi for providing financial assistance to Y.V. under RGNFS.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s10953-016-0566-7.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Varam, Y., Rajkumari, L. Interactions of N′-[1-(2-Hydroxyphenyl)ethylidene]Isonicotinohydrazide, a Hydrazone Schiff Base and Selected Lanthanides: Potentiometric and Spectral Studies. J Solution Chem 45, 1729–1754 (2016). https://doi.org/10.1007/s10953-016-0542-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0542-2