Skip to main content
Log in

Interactions of N′-[1-(2-Hydroxyphenyl)ethylidene]Isonicotinohydrazide, a Hydrazone Schiff Base and Selected Lanthanides: Potentiometric and Spectral Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 03 January 2017

Abstract

Potentiometric and spectroscopic techniques are used to study the interaction of N′-[1-(2-hydroxyphenyl)ethylidene]Isonicotinohydrazide (HpEH) with trivalent Pr, Nd, Gd, Tb, and Ho ions. Potentiometric titrations, carried out keeping the Ln3+/HpEH molar ratios at 1:2 and 1:4 at different temperature and a constant ionic strength of 0.1 mol·dm−3 KNO3 in aqueous dioxane (40%) medium, show two protons of the ligand in equilibrium and complex formation of 1:1, 1:2 and 1:3 Ln3+/HpEH stoichiometry. The conditional stability constants of the Ln3+–HpEH complexes increase in the order: Pr < Nd < Gd < Tb < Ho. The negative values of the standard state thermodynamic parameters (ΔG°, ΔH°, and ΔS°) associated with both protonation and complexation reactions for all the systems show the reactions are spontaneous, exothermic and of unfavorable entropy. Changes in the absorption bands indicate interactions of HpEH and Ln3+. Photoluminescence study of the Tb3+ and HpEH complex reveals that HpEH is florescent and has no sensitizing effect on Tb3+ luminescence in ethanol, while in the isolated solid Tb3+–HpEH complex the luminescence intensity was found to be greatly sensitized. The synthesized Tb3+–HpEH complex, characterized on the basis of elemental analysis, magnetic susceptibility, molar conductivity, thermal analysis and spectral measurements is paramagnetic, acts as a 2:1 electrolyte and is of 1:3 Ln3+/HpEH stoichiometry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sevim, R., Güniz, K.S.: Biological activities of hydrazone derivatives. Molecules 12, 1910–1939 (2007)

    Article  Google Scholar 

  2. Puntus, L., Zhuravlev, K., Lyssenko, K., Antipin, M., Pekareva, I.: Luminescence and structural properties of lanthanide complexes of Schiff bases derived from pyridoxal and amino acids. Dalton Trans. 4079–4088 (2007)

  3. Buss, J.L., Neuzil, J., Ponka, P.: Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs. Arch. Biochem. Biophys. 421, 1–9 (2004)

    Article  CAS  Google Scholar 

  4. Shabani, F., Ghammamy, S., Jahazi, A., Siavoshifar, F.: Anti-tumor activity of N′[(E)-1-(2-hydroxyphenyl) methylidene], N′-[(E)-2-phenylethylidene], N′[(E,2E)-3-phenyl-2-propenylidene], and N′[(E)ethylidene] isonicotinohydrazide on K562 and Jurkat cell lines. J. Young Pharm. 2, 399–402 (2010)

    Article  CAS  Google Scholar 

  5. Gilani, S.J., Khan, S.A., Alami, O., Singh, V., Arora, A.: Supplementary material to thiazolidin-4-one, azetidin-2-one and 1,3,4-oxadiazole derivatives of isonicotinic acid hydrazide: synthesis and their biological evaluation. J. Serb. Chem. Soc. 76, S1–S9 (2011)

    Article  Google Scholar 

  6. Sriram, D., Yogeeswari, P., Madhu, K.: Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones. Bioorg. Med. Chem. Lett. 15, 4502–4505 (2005)

    Article  CAS  Google Scholar 

  7. Ellis, S., Kalinowski, D.S., Leotta, L., Huang, M.L.H., Jelfs, P., Sintchenko, V., Richardson, D.R., Triccas, J.A.: Potent antimycobacterial activity of the pyridoxal isonicotinoyl hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: a lipophilic transport vehicle for isonicotinic acid hydrazide. Molec. Pharm. 85, 269–278 (2013)

    Article  Google Scholar 

  8. Katerina, H., Kovarikova, P., Bendova, P., Haskova, P., Mackova, E., Stariat, J., Vavrova, A., Vavrova, K., Simunek, T.: Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis. Chem. Res. Toxicol. 24, 290–302 (2011)

    Article  Google Scholar 

  9. Andrew, T.F., Peng, D., Yang, W., Franz, K.J.: Characterization of a photoswitching chelator with light-modulated geometric, electronic, and metal-binding properties. Inorg. Chem. 53, 1397–1405 (2014)

    Article  Google Scholar 

  10. Gudasi, K.B., Shenoy, R.V., Vadavi, R.S., Patil, M.S., Patil, S.A.: Synthesis, characterisation and biological evaluation of lanthanide3+ complexes with 3-acetylcoumarin-o-aminobenzoylhydrazone (ACAB). Chem. Pharm. Bull. 53, 1077–1082 (2005)

    Article  CAS  Google Scholar 

  11. Nicholson, K.N., Wood, S.A.: Aqueous geochemistry of rare earth elements and yttrium. XII: Potentiometric stability constant determination of bis-tris complexes with La, Nd, Eu, Gd, Yb, Dy, Er, Lu, Y. J. Solution Chem. 31, 703–717 (2002)

    Article  CAS  Google Scholar 

  12. Cozzi, P.G.: Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410–421 (2004)

    Article  CAS  Google Scholar 

  13. Wang, M., Yang, Z., Li, Y., Li, H.: Lanthanide complex of 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldehyde-(isonicotinoyl) hydrazone: crystal structure and DNA-binding properties. J. Coord. Chem. 64, 2974–2983 (2011)

    Article  CAS  Google Scholar 

  14. Meenatchi, V., Muthu, K., Rajasekar, M., Meenakshisundaram, S.P.: Synthesis, structure, spectral, thermal and first-order molecular hyperpolarizability of 4-benzoylpyridine isonicotinyl hydrazone monohydrate single crystals. Spectrochim. Acta A 124, 423–428 (2014)

    Article  CAS  Google Scholar 

  15. Budimir, A., Benković, T., Tomišić, V., Gojmerac Ivšić, A., Galić, N.: Hydrolysis and extraction properties of aroylhydrazones derived from nicotinic acid hydrazide. J. Solution Chem. 42, 1935–1948 (2013)

    Article  CAS  Google Scholar 

  16. Mittal, P., Uma, V., Ojha, K.G.: Potentiometric and thermodynamic studies of Schiff base hydrazone metal complexes. Der Chem. Sin. 1, 146–156 (2010)

    CAS  Google Scholar 

  17. Ogden, M., Hoch, C., Sinkov, S., Meier, G.P., Lumetta, G., Nash, K.: Complexation studies of bidentate heterocyclic N-donor ligands with Nd3+ and Am3+. J. Solution Chem. 40, 1874–1888 (2011)

    Article  CAS  Google Scholar 

  18. Pardeshi, R.K., Palaskar, N.G., Chondhekar, T.K.: Potentiometric study of the lanthanide3+ ion complexes with some Schiff bases. J. Indian Chem. Soc. 79, 958–959 (2002)

    CAS  Google Scholar 

  19. Mahmoud, F., Eid, M.M.: Thermodynamic behavior and stability constants of lanthanides–Schiff base complexes in mixed aqueous solvents. Struc. Chem. 23, 1723–1728 (2012)

    Article  CAS  Google Scholar 

  20. El-Sherif, A.A., Aljahdali, M.S.: Review: protonation, complex-formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. J. Coord. Chem. 66, 3423–3468 (2013)

    Article  CAS  Google Scholar 

  21. El-Bindary, A.A., Shoair, A.F., El-Sonbati, A.Z., Diab, M.A., Abdo, E.E.: Geometrical structure, molecular docking and potentiometric studies of Schiff base ligand. J. Mol. Liq. 212, 576–584 (2015)

    Article  CAS  Google Scholar 

  22. Bernardo, P.D., Melchior, A., Tolazzi, M., Zanonato, P.L.: Thermodynamics of lanthanide3+ complexation in non aqueous solvents. Coord. Chem. Rev. 256, 1279–1280 (2012)

    Article  Google Scholar 

  23. Sigel, H., Martin, R.B.: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82, 385–426 (1982)

    Article  CAS  Google Scholar 

  24. Mato-Iglesias, M., Rodríguez-Blas, T., Platas-Iglesias, C., Starck, M., Kadjane, P., Ziessel, R., Charbonnière, L.: Solution structure and dynamics, stability, and NIR emission properties of lanthanide complexes with a carboxylated bispyrazolylpyridyl ligand. Inorg. Chem. 48, 1507–1518 (2009)

    Article  CAS  Google Scholar 

  25. Bunzli, J.-C.G.: lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010)

    Article  Google Scholar 

  26. Brunet, E., Juanes, O., Rodriguez-Ubis, J.C.: supramolecularly organized lanthanide complexes for efficient metal excitation and luminescence as sensors in organic and biological applications. Current Chem. Bio. 1, 11–39 (2007)

    CAS  Google Scholar 

  27. Ferrand, A.-C., Imbert, D., Chauvin, A.-S., Vandevyver, C.D.B., Bünzli, J.-C.G.: Non-cytotoxic, bifunctional EuIII and TbIII luminescent macrocyclic complexes for luminescence resonant energy-transfer experiments. Chem. A Eur. J. 13, 8678–8687 (2007)

    Article  CAS  Google Scholar 

  28. Svetlana, W., Eliseevaa, V., Bunzli, J.-C.G.: Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)

    Article  Google Scholar 

  29. Jones, G., Vullev, V.I.: Medium effects on the photophysical properties of terbium3+ complexes with pyridine-2, 6-dicarboxylate. Photochem. Photobiol. Sci. 1, 925–933 (2002)

    Article  CAS  Google Scholar 

  30. Varam, Y., Lonibala, R.K.: Studies on the complexation of N′-[1-(2,4dihydroxyphenyl)ethylidene]isonicotinohydrazide with lanthanide ions. J. Chem. Eng. Data 56, 3552–3560 (2011)

    Article  CAS  Google Scholar 

  31. Sharmeli, Y., Lonibala, R.K.: Thermodynamics of the complexation of N(pyridin-2-ylmethylene)isonicotinohydrazide with lighter lanthanides. J. Chem. Eng. Data 54, 28–34 (2009)

    Article  Google Scholar 

  32. Bjerrum, J.: Metal Ammine Formation in Aqueous Solution. P. Hasse and Sons, Copenhagen (1941)

    Google Scholar 

  33. Irving, H.M., Rossotti, H.S.: The calculation of formation curves of metal complexes from pH-titration curves in mixed solvents. J. Chem. Soc. 30A, 2904–2910 (1954)

    Article  Google Scholar 

  34. Irving, H.M., Rossotti, H.S.: Methods for computing successive stability constants from experimental formation curves. J. Chem. Soc. 3397–3405 (1953)

  35. Jeffery, G.H., Bassett, J., Mendham, J., Denny, R.C.: Vogel’s Textbook of Quantitative Analysis. Revised 5th edn. Longmans, Essex (1994)

    Google Scholar 

  36. Welcher, F.J.: The Analytical Uses of Ethylenediaminetetraacetic Acid. Von Nostrand, Princeton, NJ (1965)

    Google Scholar 

  37. Choppin, G.R., Fugate, G.A.: Applications of the Judd–Ofelt theory in Ln3− chelidamic acid complexation. Mol. Phys. 101, 935–939 (2003)

    Article  CAS  Google Scholar 

  38. Geary, W.J.: The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)

    Article  CAS  Google Scholar 

  39. El-Sherbiny, M.F.: Potentiometric and thermodynamic studies of 2-thioxothiazolidin-4-one and its metal complexes. Chem. Pap. 59, 332–335 (2005)

    CAS  Google Scholar 

  40. Narang, K.K., Rao, T.R., Shrestha, S., Shrestha, S.: Synthesis, characterization, thermal and electrical properties of yttrium3+ and lanthanide complexes of salicylaldehyde benzoyl hydrazone. Synth. React. Met.-Org. Chem. 30, 931–954 (2000)

    Article  CAS  Google Scholar 

  41. Jagst, A., Sanchez, A., Vazquez-Lopez, E.M., Abram, U.: Controlled ligand deprotonation in lanthanide chelates with asymmetric semicarbazone/benzoylhydrazone or semicarbazone/thiosemicarbazone coordination spheres I. Inorg. Chem. 44, 5739–5744 (2005)

    Article  Google Scholar 

  42. Sekhon, B.S., Chopra, S.L.: A thermodynamic study of the complexation reaction for some amino acids with cerium3+ and yttrium3+. Thermochim. Acta 7, 151–157 (1973)

    Article  CAS  Google Scholar 

  43. Sahoo, S., Rati, K.B., Minati, B., Kanungo, B.K.: Spectroscopic and potentiometric study of 2,3-dihydroxybenzoic acid and its complexation with La3+ ion. Acta Chim. Slov. 55, 243–247 (2008)

    CAS  Google Scholar 

  44. Zhang, J., Badger, P.D., Geib, S.J., Petoud, S.: Synthesis and structural properties of lanthanide complexes formed with tropolonate ligands. Inorg. Chem. 46, 6473–6482 (2007)

    Article  CAS  Google Scholar 

  45. Regueiro-Figueroa, M., Esteban-Gómez, D., de Blas, A., Rodríguez-Blas, T., Platas-Iglesias, C.: Understanding stability trends along the lanthanide series. Chem. A Eur. J. 20, 3974–3981 (2014)

    Article  CAS  Google Scholar 

  46. Tian, G., Martin, L.R., Rao, L.: Thermodynamic, spectroscopic, and computational studies of lanthanide complexation with diethylenetriaminepentaacetic acid: temperature effect and coordination modes. Inorg. Chem. 50, 3087–3096 (2011)

    Article  CAS  Google Scholar 

  47. Masoud, M.S., Akelah, A., Kandil, S.S.: Spectrophotometric and potentiometric studies of some multidentate Schiff bases and their complexes. Indian J. Chem. 24A, 855–859 (1985)

    CAS  Google Scholar 

  48. Cordes, E.H., Jencks, K.P.: The mechanism of hydrolysis of Schiff bases derived from aliphatic amines. J. Am. Chem. Soc. 85, 2843–2848 (1963)

    Article  CAS  Google Scholar 

  49. Sahoo, S.K., Baral, M., Kanungo, B.K.: Potentiometric and spectrophotometric studies on the binding ability of a flexible tripodal catecholamine ligand toward iron3+. J. Chem. Eng. Data 56, 2739–2742 (2011)

    Article  Google Scholar 

  50. Liu, L., Tian, G., Rao, L.: Effect of solvation on complexation of neodymium3+ with nitrate in an ionic liquid (BumimTf2N) in comparison with water. Solvent Extr. Ion Exch. 31, 384–400 (2013)

    Article  Google Scholar 

  51. Bayes, G.S., Raut, S.S., Patil, V.R., Lokhande, R.S.: Formation of diazepam–lanthanides III complexes in the 50–50 volume % ethanol–water solvent system and study of the effect of temperature on the complex formation constants. J. Solution Chem. 41, 241–248 (2012)

    Article  CAS  Google Scholar 

  52. Comuzzi, C., Bernardo, P.D., Portanova, R., Tolazzi, M., Zanonato, P.: Affinity of lanthanide3+ ions for oxygen- and mixed oxygen–nitrogen-donor ligands in dimethylsulfoxide: a thermodynamic and spectroscopic investigation. Polyhedron 21, 1385–1391 (2002)

    Article  CAS  Google Scholar 

  53. Silverstain, R.M., Bassler, G.C., Morril, T.C.: Spectrometric Identification of Organic Compounds, 4th edn. Wiley, New York (1981). Chap. 6

    Google Scholar 

  54. Fu, Y., Zhang, J., Lv, Y., Cao, W.: The study on the effect and mechanism of the second ligands on the luminescence properties of terbium complexes. Spectrochim. Acta Part A 70, 646–650 (2008)

    Article  Google Scholar 

  55. Mohanan, K., Athira, C.J., Sujamol, M.S.: Synthesis, spectroscopic characterization and thermal studies of some lanthanide3+ nitrate complexes with a hydrazo derivative of 4-aminoantipyrine. J. Rare Earths 27, 705–710 (2009)

    Article  Google Scholar 

  56. Khalil, M.M., El-Deeb, M.M., Mahmoud, R.K.: Equilibrium studies of binary systems involving lanthanide and actinide metal ions and some selected aliphatic and aromatic monohydroxamic acids. J. Chem. Eng. Data 52, 1571–1579 (2007)

    Article  CAS  Google Scholar 

  57. Karraker, D.G.: The hypersensitive transitions of hydrated Nd3+, Ho3+, and Er3+ ions. Inorg. Chem. 7, 473–478 (1968)

    Article  CAS  Google Scholar 

  58. Choppin, G.R., Fugate, G.A.: Applications of the Judd–Ofelt theory in lanthanide–chelidamic acid complexation. Mol. Phys. 101, 935–939 (2003)

    Article  CAS  Google Scholar 

  59. Rao, L., Tian, G.: Complexation of lanthanides with nitrate at variable temperature: thermodynamics and coordination modes. Inorg. Chem. 48, 964–970 (2009)

    Article  CAS  Google Scholar 

  60. Ansari, A.A., Ilmi, R., Iftikhar, K.: Hypersensitivity in the 4f–4f absorption spectra of tris(acetylacetonato)neodymium3+ complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions. J. Lumin. 132, 51–60 (2012)

    Article  CAS  Google Scholar 

  61. Jørgensen, K., Judd, B.R.: Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281–290 (1964)

    Article  Google Scholar 

  62. Ilmi, R., Iftikhar, K.: Luminescent nine-coordinate lanthanide complexes derived from fluorinated b-diketone and 2,4,6-tris(2-pyridyl)-1,3,5-triazine. J. Coord. Chem. 65, 403–419 (2012)

    Article  CAS  Google Scholar 

  63. Kumar, R., Makrandi, J.K., Singh, I., Khatkar, S.P.: Synthesis, characterizations and luminescent properties of terbium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenone. Spectrochim. Acta, Part A 69, 1119–1124 (2008)

    Article  Google Scholar 

  64. Leonard, J.P., Gunnlaugsson, T.: Luminescent Eu3+ and Tb3+ complexes: Developing lanthanide luminescent-based devices. J. Fluores. 15, 585–595 (2005)

    Article  CAS  Google Scholar 

  65. Gutierrez, F., Tedeschi, C., Maron, L., Daudey, J.-P., Poteau, R., Azema, J., Tisnès, P., Picard, C.: Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans. 1334–1347 (2004)

  66. Tobita, S., Arakawa, M., Tanaka, I.: Electronic relaxation processes of rare earth chelates of benzoyltrifluoroacetone. J. Phys. Chem. 88, 2697–2702 (1984)

    Article  CAS  Google Scholar 

  67. Tobita, S., Arakawa, M., Tanaka, I.: The paramagnetic metal effect on the ligand localized T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J. Phys. Chem. 89, 5649–5654 (1985)

    Article  CAS  Google Scholar 

  68. Stein, G., Wurzburg, E.: Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions. J. Chem. Phys. 62, 208–213 (1975)

    Article  CAS  Google Scholar 

  69. Ermolaev, V.L., Sveshnikova, E.B.: A Mechanism of nonradiative transitions in lanthanide ions and the number of water molecules in their first coordination sphere. Opt. Spectrosc. 95, 908–913 (2003)

    Article  CAS  Google Scholar 

  70. Salama, S., Richardson, F.S.: Influence of ligand N–H oscillators versus water O–H oscillators on the luminescence decay constants of terbiumIII complexes in aqueous solution. J. Phys. Chem. 84, 512–517 (1980)

    Article  CAS  Google Scholar 

  71. Haas, Y., Stein, G.: Radiative and nonradiative pathways in solution: excited states of the europium 3+ ion. J. Phys. Chem. 76, 1093–1110 (1973)

    Article  Google Scholar 

  72. Zhao, G.-J., Liu, J.-Y., Zhou, L.-C., Han, K.-L.: Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J. Phys. Chem. B. 111, 8940–8945 (2007)

    Article  CAS  Google Scholar 

  73. Choppin, G.R., Strazik, W.F.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4, 1250–1254 (1965)

    Article  CAS  Google Scholar 

  74. Hemmilä, I., Mukkala, V.-M., Latva, M., Kiilholma, P.: Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. J. Biochem. Biophys. Methods 26, 283–290 (1993)

    Article  Google Scholar 

  75. de Faria, E.H., Nassar, E.J., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Rives, V., Calefi, P.S.: New highly luminescent hybrid materials: terbium pyridine picolinate covalently grafted on kaolinite. Appl. Mater. Interfac. 3, 1311–1318 (2011)

    Article  Google Scholar 

  76. Gassner, A.-L., Duhot, C., Bunzli, J.-C.G., Chauvin, A.-S.: Remarkable tuning of the photophysical properties of bifunctional lanthanide tris(dipicolinates) and its consequence on the design of bioprobes. Inorg. Chem. 47, 7802–7812 (2008)

    Article  CAS  Google Scholar 

  77. Gu, G.-L., Tang, R.-R., Zheng, Y.-H., Shi, X.-M.: Synthesis, characterization and fluorescence properties of novel pyridine dicarboxylic acid derivatives and corresponding Tb3+ complexes. Spectrochim. Acta Part A 71, 209–214 (2008)

    Article  Google Scholar 

  78. Yan, B., Wang, Q.-M.: Molecular fabrication and photoluminescence of novel terbium co-polymer using 4-vinyl pyridine as the efficient second ligand. Opt. Mat. 30, 617–621 (2007)

    Article  CAS  Google Scholar 

  79. Jones, G., Vullev, V.I.: Medium effects on the photophysical properties of terbium3+ complexes with pyridine-2,6-dicarboxylate. Photochem. Photobiol. Sci. 1, 925–933 (2002)

    Article  CAS  Google Scholar 

  80. Chen, H., Archer, R.D.: Synthesis and characterization of lanthanide3+ (La, Gd, Yb, Y) disalicylidene-1,2-phenylenediamine (Hzdsp) Schiff-base complexes. Inorg. Chem. 33, 5195–5202 (1994)

    Article  CAS  Google Scholar 

  81. Chakraborty, J., Thakurta, S., Pilet, G., Ziessel, R.F., Charbonnière, L.J., Mitra, S.: Syntheses, crystal structures and photophysical properties of two doubly μ-phenoxo-bridged LnIII (Ln = Pr, Nd) homodinuclear Schiff base complexes. Eur. J. Inorg. Chem. 3993–4000 (2009)

  82. Braibanti, A., Dallavale, F., Pellingheli, M.A.: The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 7, 1430–1433 (1968)

    Article  CAS  Google Scholar 

  83. Makode, J.T., Yaul, A.R., Bhadange, S.G., Aswar, A.S.: Physicochemical characterization, thermal, and electrical conductivity studies of some transition metal complexes of bis-chelating Schiff base. Russ. J. Inorg. Chem. 54, 1372–1377 (2009)

    Article  Google Scholar 

  84. Rao, N.R.: Chemical Application of Infrared Spectroscopy, pp. 258–265. Academic Press, New York (1963)

    Google Scholar 

  85. Silverstain, R.M., Bassler, G.M., Morril, T.C.: Spectrometric Identification of Organic Compounds, 4th edn. Wiley, New York (1981). Chap. 3

    Google Scholar 

  86. Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York (1986)

    Google Scholar 

  87. Tai, X., Wang, H., Sun, X.: Synthesis and spectral characterization of methyl-2-pyridyl ketone benzoyl hydrazone and its complexes with rare earth nitrates. Spectros. Lett. 38, 497–594 (2005)

    Article  CAS  Google Scholar 

  88. Naganao, K., Kinoshita, H., Hirakawa, A.: Metal complexes of isonicotinoyltydrazine and related compounds. IV. Composition formulae and infrared absorption spectra of metal complex crystals of isonicotinoylhydrazine and related compounds. Chem. Pharm. Bull. 12, 1198–1206 (1964)

    Article  Google Scholar 

  89. Prasad, S., Agarwal, R.K.: Synthesis, physico-chemical and biological properties of complexes of cobalt(II) derived from hydrazones of isonicotinic acid hydrazide. J. Korean Chem. Soc. 53, 17–26 (2009)

    Article  CAS  Google Scholar 

  90. Burns, G.R.: Metal complexes of thiocarbohydrazide. Inorg. Chem. 7, 277–283 (1968)

    Article  CAS  Google Scholar 

  91. Mohanan, K., Devi, S.N.: Synthesis characterisation, thermal, stability, reactivity, antimicrobial properties of some novel lanthanides(III) complexes of 2-(N-salicylideneamino)-3-carboxyethyl 4,5,6,7 tetrahydrobenzo[b]tiopene. Russ. J. Coord. Chem. 32, 600–809 (2006)

    Article  CAS  Google Scholar 

  92. Al-Sogair, F.M., Operschall, B.P., Sigel, A., Sigel, H., Schnabl, J., Sigel, R.K.O.: Probing the metal-ion-binding strength of the hydroxyl group. Chem. Rev. 111, 4964–5003 (2011)

    Article  CAS  Google Scholar 

  93. Carcelli, M., Lanelli, S., Pelagatti, P., Pelizzi, G., Rogolino, D., Solinas, C., Tegoni, M.: Synthesis and characterization of new lanthanide complexes with hexadentate hydrazonic ligands. Inorg. Chim. Acta 358, 903–910 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Central Drug Research Institute, Lucknow for recording NMR and mass spectra of the ligand and IIT Bombay for C H N analysis of the ligand and the complex.

Funding

Special thanks to University Grants Commission, New Delhi for providing financial assistance to Y.V. under RGNFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuimi Varam.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10953-016-0566-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varam, Y., Rajkumari, L. Interactions of N′-[1-(2-Hydroxyphenyl)ethylidene]Isonicotinohydrazide, a Hydrazone Schiff Base and Selected Lanthanides: Potentiometric and Spectral Studies. J Solution Chem 45, 1729–1754 (2016). https://doi.org/10.1007/s10953-016-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0542-2

Keywords

Navigation