Skip to main content
Log in

Chemical Equilibria Modeling of Calcium Phosphate Precipitation and Transformation in Simulated Physiological Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The metastable and stable equilibria during the precipitation of calcium phosphates in three biomimetic systems, namely SBFc-CaCl2–K2HPO4–H2O, SBFc-CaCl2–MgCl2–K2HPO4–H2O and SBFc-CaCl2–ZnCl2–K2HPO4–H2O, where SBFc denotes a conventional simulated body fluid, were modeled by a thermodynamic approach (ion-association model, computer program PHREEQCI v.2.14.3). In all cases the highest saturation indices (SI) and the thermodynamic stability were calculated for hydroxyapatite, Ca5(PO4)3OH. Co-precipitation of metastable phases of seven salts in the first system, co-precipitation of additional four magnesium salts in the second system, and no co-precipitation of zinc salts in the third system were calculated at pH 8. Precipitation of amorphous calcium phosphate incorporating Mg2+, Na+, K+, \( {\text{CO}}_{3}^{2 - } \) and Cl ions at levels close to those of natural enamel, dentin and bone, instead of the thermodynamically stable hydroxyapatite, was experimentally found. This reveals that kinetic factors are decisive for the precipitation processes. In addition, the phase transformations of the precipitated metastable amorphous products (9.94 > SI > 0) during their maturation in the three simulated body fluids, differing in their concentrations of \( {\text{HCO}}_{3}^{ - } \) and Cl ions and organic macromolecules, were also modeled. Dissolution of all magnesium salts was found to occur and equilibrium of the more stable calcium salts was established, depending on the \( {\text{HCO}}_{3}^{ - } \) concentration. In contrast, transformation of the stable equilibrium products (SI > 0) to the thermodynamically stable hydroxyapatite (SI = 0), independent of the \( {\text{HCO}}_{3}^{ - } \) concentration, was both calculated and experimentally proven. Analogous distribution of the species was calculated for the initial and equilibrium solutions of the studied SBFs, while it was different for the metastable solutions. The predominance of free Me2+ ions (Me = Ca, Mg) was calculated in all studied cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pana, H., Zhaoa, X., Brian Darvell, W., Lua, W.W.: Apatite-formation ability—predictor of “bioactivity”. Acta Biomater. 6, 4181–4188 (2010)

    Article  Google Scholar 

  2. Al-Haddad, A., Kutty, M.G., Abu Kasim, N.H., Ab Aziz, Z.A.C.: Physicochemical properties of calcium phosphate based coating on gutta-percha root canal filling. Int. J. Polym. Sci. (2015). doi:10.1155/2015/414521

    Google Scholar 

  3. Oyane, A.: Development of apatite-based composites by a biomimetic process for biomedical applications. J. Ceram. Soc. Jpn. 118, 77–81 (2010)

    Article  CAS  Google Scholar 

  4. Jalota, S., Bhaduri, S.B., Tas, A.C.: Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J. Mater. Sci.: Mater. Med. 17, 697–707 (2006)

    CAS  Google Scholar 

  5. Earle, W.R., Schilling, E.L., Stark, T.H., Straus, N.P., Brown, M.F., Shelton, E.: Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Natl. Cancer Inst. 4, 165–212 (1943)

    CAS  Google Scholar 

  6. Hanks, J.H., Wallace, R.E.: Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 71, 196–200 (1949)

    Article  CAS  Google Scholar 

  7. Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non-Crystalline Solids 120, 138–151 (1990)

    Article  CAS  Google Scholar 

  8. Bayraktar, D., Tas, A.C.: Chemical preparation of carbonated calcium hydroxyapatite powders at 37 °C in urea-containing synthetic body fluids. J. Eur. Ceram. Soc. 19, 2573–2579 (1999)

    Article  CAS  Google Scholar 

  9. Marques, P.A.A.P., Serro, A.P., Saramago, B.J., Fernandes, A.C., Magalhaes, M.C.F., Correia, R.N.: Mineralisation of two calcium phosphate ceramics in biological model fluids. J. Mater. Chem. 13, 1484–1490 (2003)

    Article  CAS  Google Scholar 

  10. Oyane, A., Kim, H.M., Furuya, T., Kokubo, T., Miyazaki, T., Nakamura, T.: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res., Part A 65, 188–195 (2003)

    Article  Google Scholar 

  11. Kim, H.M., Miyazaki, T., Kokubo, T., Nakamura, T.: Revised simulated body fluid. Key Eng. Mater. 192, 47–50 (2000)

    Google Scholar 

  12. Glinkina, I.V., Durov, V.A., Mel’nitchenko, G.A.: Modelling of electrolyte mixtures with application to chemical equilibria in mixtures—prototypes of blood’s plasma and calcification of soft tissues. J. Mol. Liq. 110, 63–67 (2004)

    Article  CAS  Google Scholar 

  13. Pasteris, J.D., Wopenka, B., Valsami-Jones, E.: Bone and tooth mineralization: why apatite. Elements 4, 97–104 (2008)

    Article  CAS  Google Scholar 

  14. Lu, X., Leng, Y.: Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26, 1097–1108 (2005)

    Article  CAS  Google Scholar 

  15. Chow, L.C., Eanes, E.D.: Octacalcium Phosphate. Karger, Basel (2001)

    Book  Google Scholar 

  16. Johnsson, M.S.-A., Nancollas, G.H.: The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev. Oral Biol. Med. 3, 61–82 (1992)

    CAS  Google Scholar 

  17. Parkhurst, D.L.: User’s guide to PHREEQC—a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report. 95-4227 (1995). http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/

  18. Ball, J.W., Nordstrom, D.K.: WATEQ4F-User’s manual, U.S. Geological Survey Open-File Report 90-129 (1991)

  19. Allison, J.D., Brown D.S., Novo-Gradac K.J.: MINTEQA2/PRODEFA2—User’s Manual. Environmental Research Laboratory, Office of Research and Development, U.S. EPA, Athens (1990)

  20. Charlton S.R., Parkhurst, D.L.: PHREEQCI-A graphical user interface to the geochemical model PHREEQC: U.S. Geological Survey Fact Sheet. FS-031-02 (2002)

  21. Gustafsson J.P.: Visual MINTEQ ver. 3.0 (2010). http://www2.lwr.kth.se/English/OurSoftware/vminteq/index.htm

  22. Magalhaes, M.C., de Aguiar Pereira Marques, P.A., Correia, R.: Calcium and magnesium phosphates: normal and pathological mineralization. In: Biomineralization—Medical Aspects of Solubility, pp. 71–123. Wiley, New York (2006)

  23. Hamad, M., Heughebaert, J.C.: The growth of whitlockite. J. Cryst. Growth 79, 192–197 (1986)

    Article  CAS  Google Scholar 

  24. McDowell, H., Gregory, T.M., Brown, W.E.: Solubility of Ca5(PO4)3OH in the system Ca(OH)2–H3PO4–H2O at 5, 15, 25 and 37 °C. J. Res. Natl. Bur. Stand. Sect. A 81A, 273–281 (1977)

    Article  CAS  Google Scholar 

  25. Sykora, V.: Chemicko Analyticke Tabulky, p. 157, Praha (1976)

  26. Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6, 1882–1894 (2010)

    Article  CAS  Google Scholar 

  27. Yamaguchi, M.: Role of zinc in bone formation and bone resorption. J. Trace Elem. Exp. Med. 11, 119–135 (1998)

    Article  CAS  Google Scholar 

  28. Moonga, B.S., Dempster, D.W.: Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner Res. 10, 453–457 (1995)

    Article  CAS  Google Scholar 

  29. Dorozhkin, S.V.: Calcium orthophosphates in nature, biology and medicine. Materials 2, 399–498 (2009)

    Article  CAS  Google Scholar 

  30. Betts, F., Posner, A.F.: Structural model for amorphous calcium phosphate. Trans. Am. Crystallogr. Assoc. 10, 73–84 (1974)

    CAS  Google Scholar 

  31. Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A.: Existence of Posner’s cluster in vacuum. J. Phys. Chem. A 104, 5111–5114 (2000)

    Article  CAS  Google Scholar 

  32. Christoffersen, M.R., Christoffersen, J., Kibalczyc, W.: Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30–42 °C. J. Cryst. Growth 106, 349–354 (1990)

    Article  CAS  Google Scholar 

  33. Dorozhkin, S.V.: Amorphous calcium (ortho)phosphates. Acta Biomater. 6, 4457–4475 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bulgarian Ministry of Education and Science under Project DFNI T02-5/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Rabadjieva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabadjieva, D., Tepavitcharova, S., Sezanova, K. et al. Chemical Equilibria Modeling of Calcium Phosphate Precipitation and Transformation in Simulated Physiological Solutions. J Solution Chem 45, 1620–1633 (2016). https://doi.org/10.1007/s10953-016-0528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0528-0

Keywords

Navigation