Skip to main content
Log in

Influence of the Anion on the Equilibrium and Transport Properties of 1-Butyl-3-methylimidazolium Based Room Temperature Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density, surface tension, viscosity and conductivity measurements at different temperatures were carried out for a series of 1-butyl-3-methylimidazolium cation based room temperature ionic liquids (RTILs) with the anions: \( \left[ {{\text{BF}}_{ 4} } \right]^{ - } , { }\left[ {{\text{MeSO}}_{ 4} } \right]^{ - } , { }\left[ {\text{SCN}} \right]^{ - } , { }\left[ {\text{Ac}} \right]^{ - } {\text{and }}\left[ {\text{Sal}} \right]^{ - } \). The main aim of the study was to explore and understand the impact of the nature of anions on the equilibrium and transport characteristics of imidazolium based RTILs. Theoretically predicted values of surface tension and density for the investigated RTILs were found to differ from their experimentally observed values and the mismatch was greater in the case of surface tension than for the density values. The conductivity–viscosity data were analyzed in light of the fractional Walden approach for quantification of ionicity. It was found that the ionicity in the investigated RTILs follows the order [BMIM][Sal] < [BMIM][Ac] < [BMIM][MeSO4] < [BMIM][SCN] < [BMIM][BF4]. The results clearly establish that the nature of the anion affects the magnitude of both equilibrium and transport properties of imidazolium based RTILs through a complex interplay of size, charge density, shape, symmetry and ability to engage in electrostatic and non-electrostatic interactions with the imidazolium cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fedorov, M.V., Kornyshev, A.A.: Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014)

    Article  CAS  Google Scholar 

  2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)

    Article  CAS  Google Scholar 

  3. Hallett, J.P., Welton, T.: Room-Temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)

    Article  CAS  Google Scholar 

  4. Niedermeyer, H., Hallett, J.P., Garcia, I.J.V., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012)

    Article  CAS  Google Scholar 

  5. Muldoon, M.J.: Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Trans. 39, 337–348 (2010)

    Article  CAS  Google Scholar 

  6. Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)

    Article  Google Scholar 

  7. Gui, J., Deng, Y., Hu, Z., Sun, Z.: A novel task-specific ionic liquid for Beckmann rearrangement: a simple and effective way for product separation. Tetrahedron Lett. 45, 2681–2683 (2004)

    Article  CAS  Google Scholar 

  8. Arce, A., Earle, M.J., Rodríguez, H., Seddon, K.R.: Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazoliumbis {(trifluoromethyl) sulfonyl}amide. Green Chem. 9, 70–74 (2007)

    Article  CAS  Google Scholar 

  9. Bhat, M.A., Ingole, P.P.: Evidence for formation of ion pair stabilized diiodomethane radical anion in 1-butyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquid. Electrochim. Acta 72, 18–22 (2012)

    Article  CAS  Google Scholar 

  10. Quinn, B.M., Ding, Z., Moulton, R., Bard, A.J.: Novel electrochemical studies of ionic liquids. Langmuir 18, 1734–1742 (2002)

    Article  CAS  Google Scholar 

  11. Bhat, M.A., Ingole, P.P., Chaudhari, V.R., Haram, S.K.: Outer sphere electroreduction of CCl4 in 1-butyl-3-methylimmidazolium tetrafluoroborate: an example of solvent specific effect of ionic liquid. J. Phys. Chem. B 113, 2848–2853 (2009)

    Article  CAS  Google Scholar 

  12. Wang, S.F., Chen, T., Zhang, Z.L., Shen, X.C., Lu, Z.X., Pang, D.W., Wong, K.Y.: Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21, 9260–9266 (2005)

    Article  CAS  Google Scholar 

  13. Bhat, M.A., Jha, S.K.: Anomalous fluctuations in current transient at glassy carbon/room temperature ionic liquid interface. Electrochim. Acta 105, 593–598 (2013)

    Article  CAS  Google Scholar 

  14. Bhat, M.A.: Mechanistic, kinetic and electroanalytical aspects of quinone–hydroquinone redox system in N-alkylimidazolium based room temperature ionic liquids. Electrochim. Acta 81, 275–282 (2012)

    Article  CAS  Google Scholar 

  15. Hapiot, P., Lagrost, C.: Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008)

    Article  CAS  Google Scholar 

  16. Bhat, M.A., Ingole, P.P.: Electrochemical Investigations on Pd2+ plus benzoquinone in imidazolium-based room temperature ionic liquids: a step towards greener Wacker catalysis. Electrocatalysis 4, 154–158 (2013)

    Article  CAS  Google Scholar 

  17. Freyland, W., Zell, C.A., El Abedin, S.Z., Endres, F.: Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochim. Acta 48, 3053–3061 (2003)

    Article  CAS  Google Scholar 

  18. Raz, O., Cohn, G., Freyland, W., Mann, O., Ein-Eli, Y.: Ruthenium electrodeposition on silicon from a room-temperature ionic liquid. Electrochim. Acta 54, 6042–6045 (2009)

    Article  CAS  Google Scholar 

  19. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014)

    Article  CAS  Google Scholar 

  20. Dupont, J., Suarez, P.A.Z.: Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 8, 2441–2452 (2006)

    Article  CAS  Google Scholar 

  21. Appetecchi, G.B., Montanino, M., Passerini, S.: Ionic liquid-based electrolytes for high-energy lithium batteries. In: Vissser, A.E., Bridges, N.J., Rogers, R.D. (eds.) Ionic Liquids: Science and Applications. ACS symposium series, vol. 1117. American Chemical Society, Washington (2013)

    Google Scholar 

  22. Mondal, A., Balasubramanian, S.: Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. J. Phys. Chem. B 118, 3409–3422 (2014)

    Article  CAS  Google Scholar 

  23. Iguchi, M., Hiraga, Y., Sato, Y.T., Aida, M., Watanabe, M., Smith, R.L.: Measurement of high-pressure densities and atmospheric viscosities of ionic liquids: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium chloride. J. Chem. Eng. Data 59, 709–717 (2014)

    Article  CAS  Google Scholar 

  24. Bhat, M.A., Dutta, C.K., Rather, G.M.: Exploring physicochemical aspects of N-alkylimidazolium based ionic liquids. J. Mol. Liq. 181, 142–151 (2013)

    Article  CAS  Google Scholar 

  25. Tokuda, H., Ishii, K., Susan, M.A.B.H., Tsuzuki, S., Hayamizu, K., Watanabe, M.: Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 110, 2833–2839 (2006)

    Article  CAS  Google Scholar 

  26. Dupont, J., Consorti, C.S., Saurez, P.A.Z., deSouza, R.F.: Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org. Synth. 79, 236–243 (2002)

    Article  CAS  Google Scholar 

  27. Rather, M.A., Rather, G.M., Pandit, S.A., Bhat, S.A., Bhat, M.A.: Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV–Vis spectrophotometry. Talanta 131, 55–58 (2015)

    Article  CAS  Google Scholar 

  28. Barthel, J., Feuerlein, F., Neueder, R., Wachter, R.: Calibration of conductance cells at various temperatures. J. Solution Chem. 9, 209–219 (1980)

    Article  CAS  Google Scholar 

  29. Sánchez, L.G., Espel, J.R., Onink, F., Meindersma, W.G., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)

    Article  Google Scholar 

  30. Domanska, U., Laskowska, M.: Temperature and composition dependence of the density and viscosity of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate + 1-alcohols. J. Chem. Eng. Data 54, 2113–2119 (2009)

    Article  CAS  Google Scholar 

  31. Nezhaad, G.V., Vatani, M., Asghari, M., Ashour, I.: Effect of temperature on the physical properties of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions. J. Chem. Thermodyn. 54, 148–154 (2012)

    Article  Google Scholar 

  32. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)

    Article  CAS  Google Scholar 

  33. Tsamba, B.E.M., Sarraute, S., Traïkia, M., Husson, P.: Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature. J. Chem. Eng. Data 59, 1747–1754 (2014)

    Article  Google Scholar 

  34. Soriano, A.N., Doma, B.T., Li, M.H.: Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 301–307 (2009)

    Article  CAS  Google Scholar 

  35. Tariq, M., Forte, P.A.S., Costa-Gomes, M.F., Lopes, J.N.C., Rebelo, L.P.N.: Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41, 790–798 (2009)

    Article  CAS  Google Scholar 

  36. Almeida, H.F.D., Passos, H., Lopes-da-Silva, J.A., Fernandes, A.M., Freire, M.G., Coutinho, J.A.: Thermophysical properties of five acetate-based ionic liquids. J. Chem. Eng. Data 57, 3005–3013 (2012)

    Article  CAS  Google Scholar 

  37. Kolbeck, C., Cremer, T., Lovelock, K.R.J., Paape, N., Schulz, P.S., Wasserscheid, P., Maier, F., Steinruck, H.P.: Influence of different anions on the surface composition of ionic liquids studied using ARXPS. J. Phys. Chem. B 113, 8682–8688 (2009)

    Article  CAS  Google Scholar 

  38. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  39. Singh, M.P., Mandal, K.S., Verma, Y.L., Gupta, A.K., Singh, R.K., Chandra, S.: Viscoelastic, surface, and volumetric properties of ionic liquids [BMIM][OcSO4], [BMIM][PF6], and [EMIM][MeSO3]. J. Chem. Eng. Data 59, 2349–2359 (2014)

    Article  CAS  Google Scholar 

  40. Slattery, J.M., Daguenet, C., Dyson, P.J., Schubert, T.J.S., Krossing, I.: How to predict the physical properties of ionic liquids: a volume-based approach. Angew. Chem. Int. Ed. 46, 5384–5388 (2007)

    Article  CAS  Google Scholar 

  41. Liu, Q.S., Tong, J., Tan, Z.C., Biermann, U.W., Yang, J.Z.: Density and surface tension of ionic liquid [C2mim][PF3(CF2CF3)3] and prediction of properties [C n mim][PF3(CF2CF3)3] (n = 1, 3, 4, 5, 6). J. Chem. Eng. Data 55, 2586–2589 (2010)

    Article  CAS  Google Scholar 

  42. Guan, W., Ma, X.X., Long, L., Tong, J., Fang, D.W., Yang, J.Z.: Ionic parachor and its application in acetic acid ionic liquid homologue 1-alkyl-3-methylimidazolium acetate {[C(n)mim][OAc](n = 2,3,4,5,6)}. J. Phys. Chem B 115, 12915–12920 (2011)

    Article  CAS  Google Scholar 

  43. Larriba, C., Yoshida, Y., de la Mora, J.F.: Correlation between surface tension and void fraction in ionic liquids. J. Phys. Chem. B 112, 12401–12407 (2008)

    Article  CAS  Google Scholar 

  44. Lide, D.R.: Handbook of Chemistry and Physics, 82nd edn. CRC Press, Boca Raton (2001)

    Google Scholar 

  45. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)

    Article  CAS  Google Scholar 

  46. Yoshimura, M., Boned, C., Baylaucq, A., Galliéro, G., Ushiki, H.: Influence of the chain length on the dynamic viscosity at high pressure of some amines: measurements and comparative study of some models. J. Chem. Thermodyn. 41, 291–300 (2009)

    Article  CAS  Google Scholar 

  47. Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)

    Article  Google Scholar 

  48. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  49. Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)

    Article  Google Scholar 

  50. Pereiro, A.B., Verdía, P., Tojo, E., Rodríguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52, 377–380 (2007)

    Article  CAS  Google Scholar 

  51. Restolho, J., Mata, J.L., Saramago, B.: On the interfacial behavior of ionic liquids: surface tensions and contact angles. J. Colloid Interface Sci. 340, 82–86 (2009)

    Article  CAS  Google Scholar 

  52. Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)

    Article  CAS  Google Scholar 

  53. Freire, G.M., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  CAS  Google Scholar 

  54. Almeida, H.F.D., Freire, M.G., Fernandes, A.M., Lopes-da-Silva, J.A., Morgado, P., Shimizu, K.E., Filipe, J.M., Canongia, J.N., Luis, L., Santos, M.N.B.F., Coutinho, J.A.P.: Cation alkyl side chain length and symmetry effects on the surface tension of ionic liquids. Langmuir 30, 6408–6418 (2014)

    Article  CAS  Google Scholar 

  55. Fernandez, A., Garcia, J., Torrecilla, J.S., Oliet, M., Rodríguez, F.: Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature. J. Chem. Eng. Data 53, 1518–1522 (2008)

    Article  CAS  Google Scholar 

  56. Sloutskin, E., Bain, C.D., Ocko, B.M., Deutsch, M.: Surface freezing of chain molecules at the liquid–liquid and liquid–air interfaces. Faraday Discuss. 129, 339–352 (2005)

    Article  CAS  Google Scholar 

  57. Law, G., Watson, P.R.: Surface orientation in ionic liquids. Chem. Phys. Lett. 345, 1–4 (2001)

    Article  CAS  Google Scholar 

  58. Law, G., Watson, P.R., Carmichael, A.J., Seddon, K.R.: Molecular composition and orientation at the surface of room-temperature ionic liquids: effect of molecular structure. Phys. Chem. Chem. Phys. 3, 2879–2885 (2001)

    Article  CAS  Google Scholar 

  59. Almeida, H.F.D., Teles, A.R.R., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A.P.: Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 54, 49–54 (2012)

    Article  CAS  Google Scholar 

  60. Knotts, T.A., Wilding, W.V., Oscarson, J.L., Rowley, R.L.: Use of the DIPPR database for development of QSPR correlations: surface tension. J. Chem. Eng. Data 46, 1007–1012 (2001)

    Article  CAS  Google Scholar 

  61. Deetlefs, M., Seddon, K.R., Shara, M.: Predicting physical properties of ionic liquids. Phys. Chem. Chem. Phys. 8, 642–649 (2006)

    Article  CAS  Google Scholar 

  62. Yu, G., Zhao, D., Wen, L., Yang, S., Chen, X.: Viscosity of ionic liquids: database, observation, and quantitative structure–property relationship analysis. AIChE J. 58, 2885–2898 (2012)

    Article  CAS  Google Scholar 

  63. Shamsipur, M., Beigi, A.A.M., Teymouri, M., Pourmortazavi, S.M.M.: Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Mol. Liq. 157, 43–50 (2010)

    Article  CAS  Google Scholar 

  64. Seki, S., Kobayashi, T., Kobayashi, Y., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152, 9–13 (2010)

    Article  CAS  Google Scholar 

  65. Dzyuba, S.V., Bartsch, R.A.: Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem 3, 161–166 (2002)

    Article  CAS  Google Scholar 

  66. Every, H.A., Bishop, A.G., MacFarlane, D., Oradd, G., Forsyth, M.: Transport properties in a family of dialkylimidazolium ionic liquids. Phys. Chem. Chem. Phys. 6, 1758–1765 (2004)

    Article  CAS  Google Scholar 

  67. Tian, Y., Wang, X., Wang, J.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate+ molecular solvent binary mixtures. J. Chem. Eng. Data 53, 2056–2059 (2008)

    Article  CAS  Google Scholar 

  68. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  69. Corradiani, F., Marcheselli, L., Marchetti, A., Tangliazucchi, M., Tassi, L., Tossi, G.: Viscosities and activation energies of viscous flow of the 1,2-ethanediol/n, n-dimethylformamide binary solvent system. Bull. Chem. Soc. Jpn 65, 503–511 (1992)

    Article  Google Scholar 

  70. Stoppa, A., Zech, O., Kunz, W., Buchner, R.: The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of cation’s alkyl chain. J. Chem. Eng. Data 55, 1768–1773 (2010)

    Article  CAS  Google Scholar 

  71. Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem. 120, 135–141 (2003)

    Article  CAS  Google Scholar 

  72. Suarez, P.A.Z., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.: Synthesis and physical–chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 95, 1626–1639 (1998)

    Article  CAS  Google Scholar 

  73. Xu, A., Zhang, Y., Li, Z., Wang, J.: Viscosities and conductivities of 1-butyl-3-methylimidazolium carboxylates ionic liquids at different temperatures. J. Chem. Eng. Data 57, 3102–3108 (2012)

    Article  CAS  Google Scholar 

  74. Frenkel, J.: Kinetic Theory of Liquids. The Clarendon Press, Oxford (1946)

    Google Scholar 

  75. Ueno, K., Tokuda, H., Watanabe, M.: Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010)

    Article  CAS  Google Scholar 

  76. Fraser, K.J., Izgorodina, E.I., Forsyth, M., Scott, J.L., MacFarlane, D.R.: Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem. Commun. 37, 3817–3819 (2007)

    Article  Google Scholar 

  77. MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009)

    Article  CAS  Google Scholar 

  78. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  79. Ohno, H.: Electrochemical Aspects of Ionic Liquids. Wiley, New Jersey (2005)

    Book  Google Scholar 

Download references

Acknowledgments

MAB would like to thank the Department of Science and Technology, New Delhi, India, for the research Grant No. SR/S1/PC-11/2009. Authors would like to thank Professor Douglas MacFarlane for his helpful suggestions regarding the Walden plot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ahmad Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S.A., Rather, M.A., Bhat, S.A. et al. Influence of the Anion on the Equilibrium and Transport Properties of 1-Butyl-3-methylimidazolium Based Room Temperature Ionic Liquids. J Solution Chem 45, 1641–1658 (2016). https://doi.org/10.1007/s10953-016-0514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0514-6

Keywords

Navigation