Abstract
Density, surface tension, viscosity and conductivity measurements at different temperatures were carried out for a series of 1-butyl-3-methylimidazolium cation based room temperature ionic liquids (RTILs) with the anions: \( \left[ {{\text{BF}}_{ 4} } \right]^{ - } , { }\left[ {{\text{MeSO}}_{ 4} } \right]^{ - } , { }\left[ {\text{SCN}} \right]^{ - } , { }\left[ {\text{Ac}} \right]^{ - } {\text{and }}\left[ {\text{Sal}} \right]^{ - } \). The main aim of the study was to explore and understand the impact of the nature of anions on the equilibrium and transport characteristics of imidazolium based RTILs. Theoretically predicted values of surface tension and density for the investigated RTILs were found to differ from their experimentally observed values and the mismatch was greater in the case of surface tension than for the density values. The conductivity–viscosity data were analyzed in light of the fractional Walden approach for quantification of ionicity. It was found that the ionicity in the investigated RTILs follows the order [BMIM][Sal] < [BMIM][Ac] < [BMIM][MeSO4] < [BMIM][SCN] < [BMIM][BF4]. The results clearly establish that the nature of the anion affects the magnitude of both equilibrium and transport properties of imidazolium based RTILs through a complex interplay of size, charge density, shape, symmetry and ability to engage in electrostatic and non-electrostatic interactions with the imidazolium cation.
Similar content being viewed by others
References
Fedorov, M.V., Kornyshev, A.A.: Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014)
Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)
Hallett, J.P., Welton, T.: Room-Temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)
Niedermeyer, H., Hallett, J.P., Garcia, I.J.V., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012)
Muldoon, M.J.: Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Trans. 39, 337–348 (2010)
Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)
Gui, J., Deng, Y., Hu, Z., Sun, Z.: A novel task-specific ionic liquid for Beckmann rearrangement: a simple and effective way for product separation. Tetrahedron Lett. 45, 2681–2683 (2004)
Arce, A., Earle, M.J., Rodríguez, H., Seddon, K.R.: Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazoliumbis {(trifluoromethyl) sulfonyl}amide. Green Chem. 9, 70–74 (2007)
Bhat, M.A., Ingole, P.P.: Evidence for formation of ion pair stabilized diiodomethane radical anion in 1-butyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquid. Electrochim. Acta 72, 18–22 (2012)
Quinn, B.M., Ding, Z., Moulton, R., Bard, A.J.: Novel electrochemical studies of ionic liquids. Langmuir 18, 1734–1742 (2002)
Bhat, M.A., Ingole, P.P., Chaudhari, V.R., Haram, S.K.: Outer sphere electroreduction of CCl4 in 1-butyl-3-methylimmidazolium tetrafluoroborate: an example of solvent specific effect of ionic liquid. J. Phys. Chem. B 113, 2848–2853 (2009)
Wang, S.F., Chen, T., Zhang, Z.L., Shen, X.C., Lu, Z.X., Pang, D.W., Wong, K.Y.: Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21, 9260–9266 (2005)
Bhat, M.A., Jha, S.K.: Anomalous fluctuations in current transient at glassy carbon/room temperature ionic liquid interface. Electrochim. Acta 105, 593–598 (2013)
Bhat, M.A.: Mechanistic, kinetic and electroanalytical aspects of quinone–hydroquinone redox system in N-alkylimidazolium based room temperature ionic liquids. Electrochim. Acta 81, 275–282 (2012)
Hapiot, P., Lagrost, C.: Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008)
Bhat, M.A., Ingole, P.P.: Electrochemical Investigations on Pd2+ plus benzoquinone in imidazolium-based room temperature ionic liquids: a step towards greener Wacker catalysis. Electrocatalysis 4, 154–158 (2013)
Freyland, W., Zell, C.A., El Abedin, S.Z., Endres, F.: Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochim. Acta 48, 3053–3061 (2003)
Raz, O., Cohn, G., Freyland, W., Mann, O., Ein-Eli, Y.: Ruthenium electrodeposition on silicon from a room-temperature ionic liquid. Electrochim. Acta 54, 6042–6045 (2009)
MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014)
Dupont, J., Suarez, P.A.Z.: Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 8, 2441–2452 (2006)
Appetecchi, G.B., Montanino, M., Passerini, S.: Ionic liquid-based electrolytes for high-energy lithium batteries. In: Vissser, A.E., Bridges, N.J., Rogers, R.D. (eds.) Ionic Liquids: Science and Applications. ACS symposium series, vol. 1117. American Chemical Society, Washington (2013)
Mondal, A., Balasubramanian, S.: Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. J. Phys. Chem. B 118, 3409–3422 (2014)
Iguchi, M., Hiraga, Y., Sato, Y.T., Aida, M., Watanabe, M., Smith, R.L.: Measurement of high-pressure densities and atmospheric viscosities of ionic liquids: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium chloride. J. Chem. Eng. Data 59, 709–717 (2014)
Bhat, M.A., Dutta, C.K., Rather, G.M.: Exploring physicochemical aspects of N-alkylimidazolium based ionic liquids. J. Mol. Liq. 181, 142–151 (2013)
Tokuda, H., Ishii, K., Susan, M.A.B.H., Tsuzuki, S., Hayamizu, K., Watanabe, M.: Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 110, 2833–2839 (2006)
Dupont, J., Consorti, C.S., Saurez, P.A.Z., deSouza, R.F.: Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org. Synth. 79, 236–243 (2002)
Rather, M.A., Rather, G.M., Pandit, S.A., Bhat, S.A., Bhat, M.A.: Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV–Vis spectrophotometry. Talanta 131, 55–58 (2015)
Barthel, J., Feuerlein, F., Neueder, R., Wachter, R.: Calibration of conductance cells at various temperatures. J. Solution Chem. 9, 209–219 (1980)
Sánchez, L.G., Espel, J.R., Onink, F., Meindersma, W.G., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)
Domanska, U., Laskowska, M.: Temperature and composition dependence of the density and viscosity of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate + 1-alcohols. J. Chem. Eng. Data 54, 2113–2119 (2009)
Nezhaad, G.V., Vatani, M., Asghari, M., Ashour, I.: Effect of temperature on the physical properties of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions. J. Chem. Thermodyn. 54, 148–154 (2012)
Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)
Tsamba, B.E.M., Sarraute, S., Traïkia, M., Husson, P.: Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature. J. Chem. Eng. Data 59, 1747–1754 (2014)
Soriano, A.N., Doma, B.T., Li, M.H.: Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 301–307 (2009)
Tariq, M., Forte, P.A.S., Costa-Gomes, M.F., Lopes, J.N.C., Rebelo, L.P.N.: Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41, 790–798 (2009)
Almeida, H.F.D., Passos, H., Lopes-da-Silva, J.A., Fernandes, A.M., Freire, M.G., Coutinho, J.A.: Thermophysical properties of five acetate-based ionic liquids. J. Chem. Eng. Data 57, 3005–3013 (2012)
Kolbeck, C., Cremer, T., Lovelock, K.R.J., Paape, N., Schulz, P.S., Wasserscheid, P., Maier, F., Steinruck, H.P.: Influence of different anions on the surface composition of ionic liquids studied using ARXPS. J. Phys. Chem. B 113, 8682–8688 (2009)
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)
Singh, M.P., Mandal, K.S., Verma, Y.L., Gupta, A.K., Singh, R.K., Chandra, S.: Viscoelastic, surface, and volumetric properties of ionic liquids [BMIM][OcSO4], [BMIM][PF6], and [EMIM][MeSO3]. J. Chem. Eng. Data 59, 2349–2359 (2014)
Slattery, J.M., Daguenet, C., Dyson, P.J., Schubert, T.J.S., Krossing, I.: How to predict the physical properties of ionic liquids: a volume-based approach. Angew. Chem. Int. Ed. 46, 5384–5388 (2007)
Liu, Q.S., Tong, J., Tan, Z.C., Biermann, U.W., Yang, J.Z.: Density and surface tension of ionic liquid [C2mim][PF3(CF2CF3)3] and prediction of properties [C n mim][PF3(CF2CF3)3] (n = 1, 3, 4, 5, 6). J. Chem. Eng. Data 55, 2586–2589 (2010)
Guan, W., Ma, X.X., Long, L., Tong, J., Fang, D.W., Yang, J.Z.: Ionic parachor and its application in acetic acid ionic liquid homologue 1-alkyl-3-methylimidazolium acetate {[C(n)mim][OAc](n = 2,3,4,5,6)}. J. Phys. Chem B 115, 12915–12920 (2011)
Larriba, C., Yoshida, Y., de la Mora, J.F.: Correlation between surface tension and void fraction in ionic liquids. J. Phys. Chem. B 112, 12401–12407 (2008)
Lide, D.R.: Handbook of Chemistry and Physics, 82nd edn. CRC Press, Boca Raton (2001)
Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)
Yoshimura, M., Boned, C., Baylaucq, A., Galliéro, G., Ushiki, H.: Influence of the chain length on the dynamic viscosity at high pressure of some amines: measurements and comparative study of some models. J. Chem. Thermodyn. 41, 291–300 (2009)
Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)
Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)
Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., de Haan, A.B.: Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J. Chem. Eng. Data 54, 2803–2812 (2009)
Pereiro, A.B., Verdía, P., Tojo, E., Rodríguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52, 377–380 (2007)
Restolho, J., Mata, J.L., Saramago, B.: On the interfacial behavior of ionic liquids: surface tensions and contact angles. J. Colloid Interface Sci. 340, 82–86 (2009)
Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)
Freire, G.M., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)
Almeida, H.F.D., Freire, M.G., Fernandes, A.M., Lopes-da-Silva, J.A., Morgado, P., Shimizu, K.E., Filipe, J.M., Canongia, J.N., Luis, L., Santos, M.N.B.F., Coutinho, J.A.P.: Cation alkyl side chain length and symmetry effects on the surface tension of ionic liquids. Langmuir 30, 6408–6418 (2014)
Fernandez, A., Garcia, J., Torrecilla, J.S., Oliet, M., Rodríguez, F.: Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature. J. Chem. Eng. Data 53, 1518–1522 (2008)
Sloutskin, E., Bain, C.D., Ocko, B.M., Deutsch, M.: Surface freezing of chain molecules at the liquid–liquid and liquid–air interfaces. Faraday Discuss. 129, 339–352 (2005)
Law, G., Watson, P.R.: Surface orientation in ionic liquids. Chem. Phys. Lett. 345, 1–4 (2001)
Law, G., Watson, P.R., Carmichael, A.J., Seddon, K.R.: Molecular composition and orientation at the surface of room-temperature ionic liquids: effect of molecular structure. Phys. Chem. Chem. Phys. 3, 2879–2885 (2001)
Almeida, H.F.D., Teles, A.R.R., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A.P.: Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 54, 49–54 (2012)
Knotts, T.A., Wilding, W.V., Oscarson, J.L., Rowley, R.L.: Use of the DIPPR database for development of QSPR correlations: surface tension. J. Chem. Eng. Data 46, 1007–1012 (2001)
Deetlefs, M., Seddon, K.R., Shara, M.: Predicting physical properties of ionic liquids. Phys. Chem. Chem. Phys. 8, 642–649 (2006)
Yu, G., Zhao, D., Wen, L., Yang, S., Chen, X.: Viscosity of ionic liquids: database, observation, and quantitative structure–property relationship analysis. AIChE J. 58, 2885–2898 (2012)
Shamsipur, M., Beigi, A.A.M., Teymouri, M., Pourmortazavi, S.M.M.: Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Mol. Liq. 157, 43–50 (2010)
Seki, S., Kobayashi, T., Kobayashi, Y., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152, 9–13 (2010)
Dzyuba, S.V., Bartsch, R.A.: Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem 3, 161–166 (2002)
Every, H.A., Bishop, A.G., MacFarlane, D., Oradd, G., Forsyth, M.: Transport properties in a family of dialkylimidazolium ionic liquids. Phys. Chem. Chem. Phys. 6, 1758–1765 (2004)
Tian, Y., Wang, X., Wang, J.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate+ molecular solvent binary mixtures. J. Chem. Eng. Data 53, 2056–2059 (2008)
Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)
Corradiani, F., Marcheselli, L., Marchetti, A., Tangliazucchi, M., Tassi, L., Tossi, G.: Viscosities and activation energies of viscous flow of the 1,2-ethanediol/n, n-dimethylformamide binary solvent system. Bull. Chem. Soc. Jpn 65, 503–511 (1992)
Stoppa, A., Zech, O., Kunz, W., Buchner, R.: The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of cation’s alkyl chain. J. Chem. Eng. Data 55, 1768–1773 (2010)
Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem. 120, 135–141 (2003)
Suarez, P.A.Z., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.: Synthesis and physical–chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 95, 1626–1639 (1998)
Xu, A., Zhang, Y., Li, Z., Wang, J.: Viscosities and conductivities of 1-butyl-3-methylimidazolium carboxylates ionic liquids at different temperatures. J. Chem. Eng. Data 57, 3102–3108 (2012)
Frenkel, J.: Kinetic Theory of Liquids. The Clarendon Press, Oxford (1946)
Ueno, K., Tokuda, H., Watanabe, M.: Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010)
Fraser, K.J., Izgorodina, E.I., Forsyth, M., Scott, J.L., MacFarlane, D.R.: Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem. Commun. 37, 3817–3819 (2007)
MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009)
Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)
Ohno, H.: Electrochemical Aspects of Ionic Liquids. Wiley, New Jersey (2005)
Acknowledgments
MAB would like to thank the Department of Science and Technology, New Delhi, India, for the research Grant No. SR/S1/PC-11/2009. Authors would like to thank Professor Douglas MacFarlane for his helpful suggestions regarding the Walden plot.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pandit, S.A., Rather, M.A., Bhat, S.A. et al. Influence of the Anion on the Equilibrium and Transport Properties of 1-Butyl-3-methylimidazolium Based Room Temperature Ionic Liquids. J Solution Chem 45, 1641–1658 (2016). https://doi.org/10.1007/s10953-016-0514-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0514-6