Skip to main content
Log in

Conformational Features of ACE-Inhibitory Valine-Isoleucine-Proline Tripeptide in Aqueous Medium According to Molecular Dynamic Simulations and 2D-NMR Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamic simulations and 2D-NMR spectroscopy were performed to study the conformations and hydrogen-bonding interactions of ACE-inhibitory valine–isoleucine–proline (VIP) tripeptide in aqueous solution. Intra-molecular distance, solvent-accessible surface, radius of gyration and root-mean-square deviations were used to describe the properties of the VIP in aqueous solution. MD results showed that the VIP molecule is highly flexible in water and the conformations can change from extended state to folded states. The VIP molecule exists in the extended state most of the time, which is in good agreement with the 2D-NMR spectra.

Graphical Abstract

Molecular dynamic simulations revealed that the ACE-inhibitory tri-peptide VIP is highly flexible in aqueous solution. The conformations can change from extended states to folded states. At most of the time, the VIP molecule exists in the extended state. Findings in simulations have been confirmed by 2D-NOESY spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poulter, N.R., Prabhakaran, D., Caulfield, M.: Hypertension. J. Lancet. 386, 801–812 (2015)

    Article  Google Scholar 

  2. Scordo, K.A., Pickett, K.A.: Managing hypertension. J. Nursing 45, 28–34 (2015)

    Article  Google Scholar 

  3. Russell, R.P., Whelton, P.K.: Hypertension in chronic renal failure. J. Am. Nephrol. 3, 185–192 (1983)

    Article  Google Scholar 

  4. Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., He, J.: Global burden of hypertension: analysis of worldwide data. J. Lancet 365, 217–223 (2005)

    Article  Google Scholar 

  5. Ribeiro-Oliveira Jr., A., Nogueira, A., Pereira, R.M., Boas, W.W.V., Santos, R.A.S.D., Silva, A.C.S.: The reni-angiotensin system and diatetes: an update. J. Vasc. Health Risk Manag. 4, 787–803 (2008)

    CAS  Google Scholar 

  6. Yesil, S., Yesil, M., Bayata, S., Postaci, N.: ACE inhibitors and cough. J. Angiol. 45, 805–808 (1994)

    Article  CAS  Google Scholar 

  7. Meisel, H.: food-derived bioactive proteins and peptides as components of nutraceutical. J. Curr. Pharm. Des. 13, 873–874 (2007)

    Article  CAS  Google Scholar 

  8. Korhonen, H., Pihlanto, A.: Bioactive peptides: production and functionality. J. Int. Dairy 16, 945–960 (2006)

    Article  CAS  Google Scholar 

  9. Wu, J.P., Aluko, R.E., Nakai, S.: Structural requirement of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem. 54, 732–738 (2006)

    Article  CAS  Google Scholar 

  10. Wu, S.F., Qi, W., Su, R.X., Li, T.H., Lu, D., He, Z.M.: COMFA and COMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. Eur. J. Med. Chem. 84, 100–106 (2014)

    Article  CAS  Google Scholar 

  11. Gu, Y.C., Majumder, K., Wu, J.P.: QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE-inhibitory peptides. J. Food Res. Int. 44, 2465–2474 (2011)

  12. Huang, G.D., Zhang, R., Luo, Y.P., Zeng, W., Wu, W.J.: Studies on the QSAR of ACE inhibitory tripeptides with proline as C-terminal and determination inhibitory activities. Chin. J. Struct. Chem. 33, 1741–1748 (2014)

    CAS  Google Scholar 

  13. Li, G.H., Liu, H., Shi, Y.H., Le, G.W.: Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. J. Pharm. Biomed. Anal. 37, 219–224 (2005)

    Article  CAS  Google Scholar 

  14. Zhang, R., Huang, J.M., Meng, X., Wu, W.J.: Molecular dynamics simulations and NMR experimental study of oxidized glutathione in aqueous solution. J. Solution Chem. 41, 879–887 (2012)

    Article  CAS  Google Scholar 

  15. Zhang, R., Huang, G.D., Zeng, W., Wu, W.J.: Conformations of oxidized glutathione in aqueous urea solution by all-atom molecular dynamic simulations and 2D-NOESY spectrum. J. Solution Chem. 42, 2229–2239 (2013)

    Article  CAS  Google Scholar 

  16. Yang, J., Aslimovska, L., Glaubitz, C.: Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J. Am. Chem. Soc. 133, 4874–4881 (2011)

    Article  CAS  Google Scholar 

  17. Rosenzweig, R., Kay, L.E.: Bringing dynamic molecular machines into focus by methyl-trosy NMR. J. Ann. Rev. Biochem. 83, 291–315 (2014)

    Article  CAS  Google Scholar 

  18. Nygaard, R., Zou, Y., Dror, R.O., Mildorf, T.J., Arlow, D.H., Manglik, A., Pan, A.C., Liu, C.W., Fung, J.J., Bokoch, M.P.: The dynamic process of β2-adrenergic receptor activation. J. Cell. 152, 532–542 (2013)

    Article  CAS  Google Scholar 

  19. Rosenman, D.J., Connors, C.R., Chen, W., Wang, C., García, A.E.: A β monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J. Mol. Biol. 425, 3338–3359 (2013)

    Article  CAS  Google Scholar 

  20. Hazelbaker, E.D., Budhathoki, S., Katihar, A., Shah, J.K., Maginn, E.J., Vasenkov, S.: Combined application of high-filed diffusion NMR and molecular dynamics simulations to study dynamics in a mixture of carbon dioxide and an imidazolium-based ionic liquid. J. Phys. Chem. B 116, 9141–9151 (2012)

    Article  CAS  Google Scholar 

  21. Huang, G.D., Zhang, R., Zeng, W., Chen, L., Wu, W.J.: Conformations and interactions of ACE inhibitor tripeptide in aqueous and DMSO solution by all-atom MD simulations and 2D-NMR spectra. J. Mol. Liq. 206, 75–81 (2015)

    Article  CAS  Google Scholar 

  22. Kobayashi, K., Liang, Y.F., Matsuoka, T.: Molecular dynamics study of aqueous NaCl solutions: flash crystallization caused by solution phase change. J. Solution Chem. 43, 1799–1809 (2014)

    Article  CAS  Google Scholar 

  23. Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides structure and properties of liquid amides. J. Am. Chem. Soc. 107, 569–578 (1985)

    Article  CAS  Google Scholar 

  24. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  25. Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)

    Article  CAS  Google Scholar 

  26. Berweger, C.D., Gunsteren, W.F., Muller-Plathe, F.: Force field parametrization by weak coupling teengineering SPC water. J Chem. Phys. Lett. 232, 429–436 (1995)

    Article  CAS  Google Scholar 

  27. Ponder, J.W.: TINKER: Software Tools for Molecular Design 7.1. Washington University School of Medicine, Saint Louis (2015)

  28. Lei, Y., Li, H., Pan, H., Han, S.: Structures and hydrogen bonding analysis of N,N-dimethylformamide and N,N-dimethylformamide–water mixtures by molecular dynamics simulations. J. Phys. Chem. A 107, 1574–1583 (2003)

    Article  CAS  Google Scholar 

  29. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)

    Article  CAS  Google Scholar 

  30. Clairac, R.P.L., Geierstanger, B.H., Mrksich, M., Dervan, P.B., Wemmer, D.E.: NMR characterization of hairpin polyamide complexes with the minor groove of DNA. J. Am. Chem. Soc. 119, 7909–7916 (1997)

    Article  Google Scholar 

  31. Zheng, G., Stait-Gardner, T., Anil Kumar, P.G., Torres, A.M., Price, W.S.: PGSTE-WATERGATE: an STE-based PGSE NMR sequence with excellent solvent suppression. J. Magn. Reson. 191, 159–163 (2008)

    Article  CAS  Google Scholar 

  32. Lei, Y., Li, H., Zhang, R., Han, S.: Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B. 108, 10131–10137 (2004)

    Article  CAS  Google Scholar 

  33. Schedlbauer, A., Coudevylle, N., Auer, R., Kloiber, K., Tollinger, M., Konrat, R.: Autocorrelation analysis of NOESY data provides residue compactness for folded and unfolded proteins. J. Am. Chem. Soc. 131, 6038–6039 (2009)

  34. Lo, J., Yen, H., Tsai, C., Chen, B., Hou, S.: Interaction between hydrophobically modified 2-hydroxyethyl cellulose and sodium dodecyl sulfate studied by viscometry and two-dimensional NOE NMR spectroscopy. J. Phys. Chem. B 118, 6922–6930 (2014)

    Article  CAS  Google Scholar 

  35. Khodov, I.A., Nikiforov, M.Y., Alper, G.A., Blokhin, D.S., Efimov, S.V., Klochkov, V.V., Georgi, N.: Spatial structure of felodipine dissolved in DMSO by 1D NOE and 2D NOESY NMR spectroscopy. J. Mol. Struct. 1035, 358–362 (2013)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos: 21202021, 20903026), the Talents Introduction Foundation for Universities of Guangdong Province (2011), Natural Science Foundation of Shang-Hai (12ZR1440700), and the Science and Technology Planning Project of Guangzhou (No. 2013J4100071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Chen, L., Wei, H. et al. Conformational Features of ACE-Inhibitory Valine-Isoleucine-Proline Tripeptide in Aqueous Medium According to Molecular Dynamic Simulations and 2D-NMR Spectroscopy. J Solution Chem 45, 1213–1226 (2016). https://doi.org/10.1007/s10953-016-0505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0505-7

Keywords

Navigation