Skip to main content


Log in

Measurement and Correlation of the Solubility of Telmisartan (Form A) in Nine Different Solvents from 277.85 to 338.35 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript


The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Patel, P.A., Patravale, V.B.: Commercial telmisartan tablets: a comparative evaluation with innovator brand micardis. Int. J. Pharm. Sci. Res. 1, 282–292 (2010)

    CAS  Google Scholar 

  2. Laragh, J.: The renin system and the renal regulation of blood pressure. In: Seldin, D.W., Giebisch, G. (eds.) The Kidney: Physiology and Pathophiyology, 2nd edn, pp. 1411–1453. Raven Press, New York (1992)

    Google Scholar 

  3. Lepek, P., Sawicki, W., Wlodarski, K., Wojnarowska, Z., Paluch, M., Guzik, L.: Effect of amorphization method on telmisartan solubility and the tableting process. Eur. J. Biochem. 83, 114–121 (2013)

    CAS  Google Scholar 

  4. Dinnebier, R.E., Sieger, P., Nar, H., Shankland, K., David, W.I.: Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction. J. Pharm. Sci. 89, 1465–1479 (2000)

    Article  CAS  Google Scholar 

  5. Adin, I., Iustain, C., Brand, M., Salman, A., Weisman, A.: Processes of Preparing Highly Pure Telmisartan Form A, Suitable for Pharmaceutical Compositions. US Patent 20060276525 (2006)

  6. Donsbach, K., Hof, I.: Crystalline Form of Telmisartan Sodium. US Patent 6737432 (2004)

  7. Chen, Y.: Study on quality control and stability test for telmisartan. Master’s thesis, Zhejiang University (2005)

  8. Park, J., Cho, W., Cha, K., Ahn, J., Han, K., Hwang, S.: Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int. J. Pharm. 441, 50–55 (2013)

    Article  CAS  Google Scholar 

  9. Nývlt, J.: Solid–Liquid Phase Equilibria. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague (1977)

    Google Scholar 

  10. Jiang, Q., Gao, G., Yu, Y., Qin, Y.: Solubility of sodium dimethyl isophthalate-5-sulfonate in water and in water + methanol containing sodium sulfate. J. Chem. Eng. Data 45, 292–294 (2000)

    Article  CAS  Google Scholar 

  11. Liu, B., Sun, H., Wang, J., Yin, Q.: Thermodynamic analysis and correlation of solubility of disodium 5′-guanylate heptahydrate in aqueous ethanol mixtures. Fluid Phase Equilib. 370, 58–64 (2014)

    Article  CAS  Google Scholar 

  12. Hong, M., Xu, L., Ren, G., Chen, J., Qi, M.: Solubility of lansoprazole in different solvents. Fluid Phase Equilib. 331, 18–25 (2012)

    Article  CAS  Google Scholar 

  13. Wei, Y., Zhang, X., Zhang, J., Dang, L., Wei, H.: Solid–liquid equilibrium of some polycyclic aromatic hydrocarbons in wash oil. Fluid Phase Equilib. 319, 23–29 (2012)

    Article  CAS  Google Scholar 

  14. Liu, W., Dang, L., Black, S., Wei, H.: Solubility of carbamazepine (form III) in different solvents from (275 to 343) K. J. Chem. Eng. Data 53, 2204–2206 (2008)

    Article  CAS  Google Scholar 

  15. Zhang, C., Wang, J., Wang, Y.: Solubility of ceftriaxone disodium in acetone, methanol, ethanol, N, N-dimethylformamide, and formamide between 278 and 318 K. J. Chem. Eng. Data 50, 1757–1760 (2005)

    Article  CAS  Google Scholar 

  16. Bradley, J., Abraham, M.H., Acree, W.E., Lang, A.: Predicting Abraham model solvent coefficients. Chem. Cent. J. 9, 1–10 (2015)

    Article  Google Scholar 

  17. Apelblat, A., Manzurola, E.: Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K. J. Chem. Thermodyn. 19, 317–320 (1987)

    Article  CAS  Google Scholar 

  18. Buchowski, H., Ksiazczak, A., Pietrzyk, S.: Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 84, 975–979 (1980)

    Article  CAS  Google Scholar 

  19. Mo, Y., Dang, L., Wei, H.: Solubility of α-form and β-form of l-glutamic acid in different aqueous solvent mixtures. Fluid Phase Equilib. 300, 105–109 (2011)

    Article  CAS  Google Scholar 

  20. Kai, W., Hu, Y., Yang, W., Song, G., Ying, S.: Measurement and correlation of the solubility of 2,3,4,5-tetrabromothiophene in different solvents. J. Chem. Thermodyn. 55, 50–55 (2012)

    Article  Google Scholar 

  21. Hefter, G.T., Tomkins, R.P.T.: Chapter 1.1. Thermodynamics of Solubility. Wiley, New York (2004)

    Google Scholar 

  22. Ness, H.C.V.: Chemical Thermodynamics, Vol. 2: by M.L. McGlashan (Senior Reporter), The Chemical Society, London, 1978. Fluid Phase Equilib. 2, 312 (1979)

    Article  Google Scholar 

  23. Rodríguez, G.A., Delgado, D.R., Martínez, F., Jouyban, A., Acree, W.E.: Solubility of naproxen in ethyl acetate + ethanol mixtures at several temperatures and correlation with the Jouyban–Acree model. Fluid Phase Equilib. 320, 49–55 (2012)

    Article  Google Scholar 

  24. Panteli, E.K., Voutsas, E.K.: Solubilities of cinnamic acid esters in ionic liquids. J. Chem. Eng. Data 54, 812–818 (2009)

    Article  CAS  Google Scholar 

  25. El-Bindary, A.A., El-Sonbati, A.Z., Ahmed, E.M.A.M., El-Bindary, A.A., El-Sonbati, A.Z.: Potentiometric and thermodynamic studies of azosulfonamide drugs. X. Chem. Pap. 57, 255–258 (2003)

    CAS  Google Scholar 

  26. Kapil, B., Shipra, B.: Measurement and correlation for solubility of some pyrimidine derivatives in different solvents. J. Appl. Chem. 2014, 1–7 (2014)

    Google Scholar 

Download references


The authors would like to thank the National Nature and Science Foundation of China (NSFC, No. 21206032), the Science Foundation Henan University of Technology (No. 2012CXRC08) and the Science Foundation of Henan Province (No. 2015GGJS-039) for their financial assistance for this project. Thanks for David Kearns for the language revision.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wenju Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Guo, Y., Chen, J. et al. Measurement and Correlation of the Solubility of Telmisartan (Form A) in Nine Different Solvents from 277.85 to 338.35 K. J Solution Chem 45, 932–946 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: