Advertisement

Journal of Solution Chemistry

, Volume 45, Issue 6, pp 932–946 | Cite as

Measurement and Correlation of the Solubility of Telmisartan (Form A) in Nine Different Solvents from 277.85 to 338.35 K

  • Wenju LiuEmail author
  • Yajun Guo
  • Jiaxing Chen
  • Xi Yu
Article

Abstract

The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.

Keywords

Telmisartan Solubility Apelblat equation λh equation Solution thermodynamic properties 

Notes

Acknowledgments

The authors would like to thank the National Nature and Science Foundation of China (NSFC, No. 21206032), the Science Foundation Henan University of Technology (No. 2012CXRC08) and the Science Foundation of Henan Province (No. 2015GGJS-039) for their financial assistance for this project. Thanks for David Kearns for the language revision.

References

  1. 1.
    Patel, P.A., Patravale, V.B.: Commercial telmisartan tablets: a comparative evaluation with innovator brand micardis. Int. J. Pharm. Sci. Res. 1, 282–292 (2010)Google Scholar
  2. 2.
    Laragh, J.: The renin system and the renal regulation of blood pressure. In: Seldin, D.W., Giebisch, G. (eds.) The Kidney: Physiology and Pathophiyology, 2nd edn, pp. 1411–1453. Raven Press, New York (1992)Google Scholar
  3. 3.
    Lepek, P., Sawicki, W., Wlodarski, K., Wojnarowska, Z., Paluch, M., Guzik, L.: Effect of amorphization method on telmisartan solubility and the tableting process. Eur. J. Biochem. 83, 114–121 (2013)Google Scholar
  4. 4.
    Dinnebier, R.E., Sieger, P., Nar, H., Shankland, K., David, W.I.: Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction. J. Pharm. Sci. 89, 1465–1479 (2000)CrossRefGoogle Scholar
  5. 5.
    Adin, I., Iustain, C., Brand, M., Salman, A., Weisman, A.: Processes of Preparing Highly Pure Telmisartan Form A, Suitable for Pharmaceutical Compositions. US Patent 20060276525 (2006)Google Scholar
  6. 6.
    Donsbach, K., Hof, I.: Crystalline Form of Telmisartan Sodium. US Patent 6737432 (2004)Google Scholar
  7. 7.
    Chen, Y.: Study on quality control and stability test for telmisartan. Master’s thesis, Zhejiang University (2005)Google Scholar
  8. 8.
    Park, J., Cho, W., Cha, K., Ahn, J., Han, K., Hwang, S.: Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int. J. Pharm. 441, 50–55 (2013)CrossRefGoogle Scholar
  9. 9.
    Nývlt, J.: Solid–Liquid Phase Equilibria. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague (1977)Google Scholar
  10. 10.
    Jiang, Q., Gao, G., Yu, Y., Qin, Y.: Solubility of sodium dimethyl isophthalate-5-sulfonate in water and in water + methanol containing sodium sulfate. J. Chem. Eng. Data 45, 292–294 (2000)CrossRefGoogle Scholar
  11. 11.
    Liu, B., Sun, H., Wang, J., Yin, Q.: Thermodynamic analysis and correlation of solubility of disodium 5′-guanylate heptahydrate in aqueous ethanol mixtures. Fluid Phase Equilib. 370, 58–64 (2014)CrossRefGoogle Scholar
  12. 12.
    Hong, M., Xu, L., Ren, G., Chen, J., Qi, M.: Solubility of lansoprazole in different solvents. Fluid Phase Equilib. 331, 18–25 (2012)CrossRefGoogle Scholar
  13. 13.
    Wei, Y., Zhang, X., Zhang, J., Dang, L., Wei, H.: Solid–liquid equilibrium of some polycyclic aromatic hydrocarbons in wash oil. Fluid Phase Equilib. 319, 23–29 (2012)CrossRefGoogle Scholar
  14. 14.
    Liu, W., Dang, L., Black, S., Wei, H.: Solubility of carbamazepine (form III) in different solvents from (275 to 343) K. J. Chem. Eng. Data 53, 2204–2206 (2008)CrossRefGoogle Scholar
  15. 15.
    Zhang, C., Wang, J., Wang, Y.: Solubility of ceftriaxone disodium in acetone, methanol, ethanol, N, N-dimethylformamide, and formamide between 278 and 318 K. J. Chem. Eng. Data 50, 1757–1760 (2005)CrossRefGoogle Scholar
  16. 16.
    Bradley, J., Abraham, M.H., Acree, W.E., Lang, A.: Predicting Abraham model solvent coefficients. Chem. Cent. J. 9, 1–10 (2015)CrossRefGoogle Scholar
  17. 17.
    Apelblat, A., Manzurola, E.: Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K. J. Chem. Thermodyn. 19, 317–320 (1987)CrossRefGoogle Scholar
  18. 18.
    Buchowski, H., Ksiazczak, A., Pietrzyk, S.: Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 84, 975–979 (1980)CrossRefGoogle Scholar
  19. 19.
    Mo, Y., Dang, L., Wei, H.: Solubility of α-form and β-form of l-glutamic acid in different aqueous solvent mixtures. Fluid Phase Equilib. 300, 105–109 (2011)CrossRefGoogle Scholar
  20. 20.
    Kai, W., Hu, Y., Yang, W., Song, G., Ying, S.: Measurement and correlation of the solubility of 2,3,4,5-tetrabromothiophene in different solvents. J. Chem. Thermodyn. 55, 50–55 (2012)CrossRefGoogle Scholar
  21. 21.
    Hefter, G.T., Tomkins, R.P.T.: Chapter 1.1. Thermodynamics of Solubility. Wiley, New York (2004)Google Scholar
  22. 22.
    Ness, H.C.V.: Chemical Thermodynamics, Vol. 2: by M.L. McGlashan (Senior Reporter), The Chemical Society, London, 1978. Fluid Phase Equilib. 2, 312 (1979)CrossRefGoogle Scholar
  23. 23.
    Rodríguez, G.A., Delgado, D.R., Martínez, F., Jouyban, A., Acree, W.E.: Solubility of naproxen in ethyl acetate + ethanol mixtures at several temperatures and correlation with the Jouyban–Acree model. Fluid Phase Equilib. 320, 49–55 (2012)CrossRefGoogle Scholar
  24. 24.
    Panteli, E.K., Voutsas, E.K.: Solubilities of cinnamic acid esters in ionic liquids. J. Chem. Eng. Data 54, 812–818 (2009)CrossRefGoogle Scholar
  25. 25.
    El-Bindary, A.A., El-Sonbati, A.Z., Ahmed, E.M.A.M., El-Bindary, A.A., El-Sonbati, A.Z.: Potentiometric and thermodynamic studies of azosulfonamide drugs. X. Chem. Pap. 57, 255–258 (2003)Google Scholar
  26. 26.
    Kapil, B., Shipra, B.: Measurement and correlation for solubility of some pyrimidine derivatives in different solvents. J. Appl. Chem. 2014, 1–7 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhouChina
  2. 2.School of Engineering and Applied ScienceEuropean Bioenergy Research Institute (EBRI)BirminghamUK

Personalised recommendations