Skip to main content
Log in

The Effect of Solvent on Tautomerism, Acidity and Radical Stability of Curcumin and Its Derivatives Based on Thermodynamic Quantities

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability of curcumin and some of its derivatives in terms of diketo/enol tautomerism was studied in a number of solvents by means of standard density functional theory calculations. The ratio of diketo to enol forms has been investigated in the studied solvents. The active sites for deprotonation of curcumin in different liquid solutions were also investigated in order to explore the acidic properties of curcumin. The solvent presents a dominant role on the acidic property of curcumin so that the hydrogen of the enolic hydroxyl group is more acidic in ethanol and water, but the hydrogen of the phenolic hydroxyl group is more acidic in other studied solvents. It has also been revealed that the radical derived from the phenolic hydroxyl group is much more stable than the radical derived from the enolic hydroxyl group. Calculations also show that the abilities of other derivatives to scavenge free radicals are comparable with curcumin in all of the studied liquid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., Masella, R.: Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci. 11, 1321–1342 (2010)

    Article  Google Scholar 

  2. Wojdyło, A., Oszmiański, J., Czemerys, R.: Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105, 940–949 (2007)

    Article  Google Scholar 

  3. Erez, Y., Presiado, I., Gepshtein, R., Huppert, D.: Temperature dependence of the fluorescence properties of curcumin. J. Phys. Chem. A 115, 10962–10971 (2011)

    Article  CAS  Google Scholar 

  4. Ferrari, E., Asti, M., Benassi, R., Pignedoli, F., Saladini, M.: Metal binding ability of curcumin derivatives: a theoretical vs. experimental approach. J. Chem. Soc. Dalton Trans. 42, 5304–5313 (2013)

    Article  CAS  Google Scholar 

  5. Dairam, A., Limson, J.L., Watkins, G.M., Antunes, E., Daya, S.: Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. J. Agric. Food Chem. 55, 1039–1044 (2007)

    Article  CAS  Google Scholar 

  6. Aggarwal, B.B., Kumar, A., Bharti, A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)

    CAS  Google Scholar 

  7. Wilken, R., Veena, M.S., Wang, M.B., Srivatsan, E.S.: Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 1–19 (2011)

    Article  Google Scholar 

  8. Ye, M.-X., Li, Y., Yin, H., Zhang, J.: Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int. J. Mol. Sci. 13, 3959–3978 (2012)

    Article  CAS  Google Scholar 

  9. Salem, M., Rohani, S., Gillies, E.R.: Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 4, 10815–10829 (2014)

    Article  CAS  Google Scholar 

  10. Wang, P., Su, C., Li, R., Wang, H., Ren, Y., Sun, H., Yang, J., Sun, J., Shi, J., Tian, J.: Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J. Neurosci. Res. 92, 218–231 (2014)

    Article  CAS  Google Scholar 

  11. Xiong, Z., Hongmei, Z., Lu, S., Yu, L.: Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep. 63, 1101–1108 (2011)

    Article  Google Scholar 

  12. Yang, I.-S., Jin, S.-M., Kang, J.-H., Ramanathan, V., Kim, H.-M., Suh, Y.-D., Kim, S.-K.: Excited state dynamics of curcumin and solvent hydrogen bonding. Bull. Korean Chem. Soc. 32, 3090–3093 (2011)

    Article  CAS  Google Scholar 

  13. Ghosh, R., Mondal, J.A., Palit, D.K.: Ultrafast dynamics of the excited states of curcumin in solution. J. Phys. Chem. B 114, 12129–12143 (2010)

    Article  CAS  Google Scholar 

  14. Payton, F., Sandusky, P., Alworth, W.L.: NMR study of the solution structure of curcumin. J. Nat. Prod. 70, 143–146 (2007)

    Article  CAS  Google Scholar 

  15. Kolev, T.M., Velcheva, E.A., Stamboliyska, B.A., Spiteller, M.: DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 102, 1069–1079 (2005)

    Article  CAS  Google Scholar 

  16. Kawano, S.-I., Inohana, Y., Hashi, Y., Lin, J.-M.: Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry. Chin. Chem. Lett. 24, 685–687 (2013)

    Article  CAS  Google Scholar 

  17. Bertolasi, V., Ferretti, V., Gilli, P., Yao, X., Li, C.-J.: Substituent effects on keto–enol tautomerization of β-diketones from X-ray structural data and DFT calculations. New J. Chem. 32, 694–704 (2008)

    Article  CAS  Google Scholar 

  18. Lee, W.-H., Loo, C.-Y., Bebawy, M., Luk, F., Mason, R.S., Rohanizadeh, R.: Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 11, 338–378 (2013)

    Article  CAS  Google Scholar 

  19. Cornago, P., Claramunt, R.M., Bouissane, L., Alkorta, I., Elguero, J.: A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64, 8089–8094 (2008)

    Article  CAS  Google Scholar 

  20. Benassi, R., Ferrari, E., Lazzari, S., Spagnolo, F., Saladini, M.: Theoretical study on curcumin: a comparison of calculated spectroscopic properties with NMR, UV–vis and IR experimental data. J. Mol. Struct. 892, 168–176 (2008)

    Article  CAS  Google Scholar 

  21. Zhao, X.-Z., Jiang, T., Wang, L., Yang, H., Zhang, S., Zhou, P.: Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct. 984, 316–325 (2010)

    Article  CAS  Google Scholar 

  22. Naama, J.H., Alwan, G.H., Obayes, H.R., Al-Amiery, A.A., Al-Temimi, A.A., Kadhum, A.A.H., Mohamad, A.B.: Curcuminoids as antioxidants and theoretical study of stability of curcumin isomers in gaseous state. Res. Chem. Intermed. 39, 4047–4059 (2013)

    Article  CAS  Google Scholar 

  23. Manolova, Y., Deneva, V., Antonov, L., Drakalska, E., Momekova, D., Lambov, N.: The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim. Acta A 132, 815–820 (2014)

    Article  CAS  Google Scholar 

  24. Dutta, A., Boruah, B., Saikia, P.M., Dutta, R.K.: Stabilization of diketo tautomer of curcumin by premicellar cationic surfactants: a spectroscopic, tensiometric and TD-DFT study. J. Mol. Liq. 187, 350–358 (2013)

    Article  CAS  Google Scholar 

  25. Heger, M., van Golen, R.F., Broekgaarden, M., Michel, M.C.: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66, 222–307 (2014)

    Article  Google Scholar 

  26. Benassi, E., Spagnolo, F.: A combined theoretical and experimental approach to the study of the structural and electronic properties of curcumin as a function of the solvent. J. Solution Chem. 39, 11–29 (2010)

    Article  CAS  Google Scholar 

  27. Lü, J.M., Lin, P.H., Yao, Q., Chen, C.: Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med. 14, 840–860 (2010)

    Article  Google Scholar 

  28. Priyadarsini, K.I., Maity, D.K., Naik, G., Kumar, M.S., Unnikrishnan, M., Satav, J., Mohan, H.: Role of phenolic OH and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 35, 475–484 (2003)

    Article  CAS  Google Scholar 

  29. Barzegar, A.: The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 135, 1369–1376 (2012)

    Article  CAS  Google Scholar 

  30. Chen, C., Xue, H., Mu, S.: pH dependence of reactive sites of curcumin possessing antioxidant activity and free radical scavenging ability studied using the electrochemical and ESR techniques: polyaniline used as a source of the free radical. J. Electroanal. Chem. 713, 22–27 (2014)

    Article  CAS  Google Scholar 

  31. Ferrari, E., Benassi, R., Sacchi, S., Pignedoli, F., Asti, M., Saladini, M.: Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J. Inorg. Biochem. 139, 38–48 (2014)

    Article  CAS  Google Scholar 

  32. Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126, 084108–084119 (2007)

    Article  Google Scholar 

  33. Červinka, C., Fulem, M., Růžička, K.T.: Evaluation of accuracy of ideal-gas heat capacity and entropy calculations by density functional theory (DFT) for rigid molecules. J. Chem. Eng. Data 57, 227–232 (2011)

    Article  Google Scholar 

  34. Quintal, M.M., Karton, A., Iron, A., Boese, A.D., Martin, J.M.: Benchmark study of DFT functionals for late-transition-metal reactions. J. Phys. Chem. A 110, 709–716 (2006)

    Article  CAS  Google Scholar 

  35. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009)

    Article  CAS  Google Scholar 

  36. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02, vol. 19. Gaussian, Inc., Wallingford, (2009)

  37. McQuarrie, D.A.: Statistical Thermodynamics. HarperCollins Publishers, New York (1973)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge generous allocations of computing time from the Australian National Computational Infrastructure. SA thanks the Yazd University graduate school for a Doctoral fellowship. MN appreciates the Research School of Chemistry, Australian National University, for providing him a visiting fellowship to join Prof. M. L. Coote’s research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Namazian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjomshoa, S., Namazian, M. & Noorbala, M.R. The Effect of Solvent on Tautomerism, Acidity and Radical Stability of Curcumin and Its Derivatives Based on Thermodynamic Quantities. J Solution Chem 45, 1021–1030 (2016). https://doi.org/10.1007/s10953-016-0481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0481-y

Keywords

Navigation