Abstract
The interaction of a number of divalent and trivalent metal ions [iron(III), chromium(III) copper(II), cobalt(II) and nickel(II)] with four isolated and purified microbial catecholate and hydroxamate siderophores was studied using the pH-potentiometric technique to investigate the complexation behavior of these systems as these systems could mimic many biological interactions of the siderophore chelating agent. The protonation constants of these new siderophore analogues as well their binary complex species stability constants were determined using the Hyperquad 2008 estimation model program. From the determined stability constants of the metal complex species, the concentration distribution of the various metal ion complex species involving isolated siderophore analogues in solutions was estimated using the HySS 2009 modeling program. The complex species distribution diagrams were plotted and discussed. Additionally, the Gibbs energies and the molecular structures of the formed complex species were evaluated and predicted using Gaussian 09 software for molecular modeling and density functional theory calculations.
Similar content being viewed by others
References
Cornelis, P., Matthijs, S.: Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4(12), 787–798 (2002)
Stintzi, A., Raymond, K.N., Olson, M.O.J., Arceneaux, J.E.L., Clem, L.W., Byers, B.R.: Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aeromonas hydrophila: direct measurement of individual microscopic rate constants. J. Biol. Inorg. Chem. 5(1), 57–66 (2000)
Bultreys, A., Gheysen, I., de Hoffmann, E.: Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Appl. Environ. Microbiol. 72(6), 3814–3825 (2006)
Guterman, L.D.: Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 114(3), 1225–1230 (1973)
Miles, A., Khimji, P.L.: Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J. Med. Microbiol. 8(4), 477–490 (1975)
O’Brien, G., Gibson, F.: The structure of enterochelin and related 2,3-dihydroxy-N-benzoyneconjugates from Eschericha coli. Biochim. Biophys. Acta - General Subjects 215(2), 393–402 (1970)
Bister, B., Bischoff, D., Nicholson, G.J., Valdebenito, M., Schneider, K., Winkelmann, G., Hantke, K., Süssmuth, R.D.: The structure of salmochelins:C-glucosylated enterobactins of Salmonella enterica. Biometals 17(4), 471–481 (2004)
Martinez, J.S., Haygood, M.G., Butler, A.: Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnol. Oceanogr 46(2), 420–424 (2001)
Bergeron, R.J., Singh, S., Bharti, N.: Synthesis of heterobactins A and B and Nocardia heterobactin. Tetrahedron 67, 3163–3169 (2011)
Smits, T.H.M., Duffy, B.: Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Archiv. Microbiol. 193(10), 693–699 (2011)
Patel, P., Song, L., Challis, G.L.: Distinct extracytoplasmic siderophore binding proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor A3(2). Biochem. 49(37), 8033–8042 (2010)
Chiani, M., Akbarzadeh, A., Farhangi, A., Mazinani, M., Saffari, Z., Emadzadeh, K., Mehrabi, M.R.: Optimization of culture medium to increase the production of desferrioxamine B (Desferal) in Streptomyces pilosus. Pak. J. Biol. Sciences 13(11), 546–550 (2010)
Neilands, J.B.: Methodology of siderophores. Struct. Bond. 58, 1–24 (1984)
Hossain, M.B., Jalal, M.A.F., Van Der Helm, D.: Gallium-complex of anguibactin, a siderophore from fish pathogen Vibrio anguillarum. J. Chem. Crystallography 28(1), 57–60 (1998)
Atkin, C.L., Neilands, J.B., Phaff, H.J.: Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103(3), 722–733 (1970)
Zajdowicz, S., Haller, J.C., Krafft, A.E., Hunsucker, S.W., Mant, C.T., Duncan, M.W., Hodges, R.S., Jones, D.N.M., Holmes, R.K.: Purification and structural characterization of siderophore (Corynebactin) from Corynebacterium diphtheria. PLoS ONE 7(4), e34591 (2012)
Bluhm, M.E., Kim, S.S., Dertz, E.A., Raymond, K.N.: Corynebactin and enterobactin: related siderophores of opposite chirality. J. Am. Chem. Soc. 124(11), 2436–2439 (2002)
Duhme, A.-K., Hider, R.C., Naldrett, M.J., Pau, R.N.: The stability of the molybdenum–azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. J. Biol. Inorg. Chem. 3(5), 520–526 (1998)
Espinet, P., Lorenzo, C., Miguel, J.A., Bois, C., Jeannin, Y.: Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thiocarboxylate), pdtc. crystal structure of (n-Bu4N)[Pd(pdtc)Br]. Inorg. Chem. 33(9), 2052–2055 (1994)
Anderegg, G., Raber, M.: Metal complex formation of a new siderophore desferrithiocin and of three related ligands. J. Chem. Soc. - Series 17, 1194–1196 (1990)
Brandel, J., Humbert, N., Elhabiri, M., Schalk, I.J., Mislin, G.L.A., Albrecht-Gary, A.-M.: Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Transact. 41(9), 2820–2834 (2012)
Iglesias, E., Brandariz, I., Jiménez, C., Soengas, R.G.: Iron(III) complexation by Vanchrobactin, a siderophore of the bacterial fish pathogen Vibrio anguillarum. Metallomics 3, 521–528 (2011)
Fadeev, E.A., Luo, M., Luo, M., Groves, G.T.: Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. J. Am. Chem. Soc. 126(38), 12065–12075 (2004)
Espada, A., Anta, C., Bragado, A., Rodríguez, J., Jiménez., C.: Synthesis, structure, and molecular dynamics ofgallium complexes of schizokinen and the amphiphilic siderophore Acinetoferrin. J. Am. Chem. Soc. 126(38), 12065–12075 (2004)
Nwugo, C.C., Gaddy, J.A., Zimbler, D.L., Zimbler, D.L., Actis, L.A.: Deciphering the iron response in Acinetobacter baumannii: a proteomics approach. J. Proteomics 74(1), 44–58 (2011)
Fazary, A.E., Rajhi, A.Q.: Complexation equilibria of vitamin B9, glycine oligopeptides with di- and trivalent metal ions. Asian J. Chem. 27(10), 3872–3876 (2015)
Fazary, A.E.: Metal complexes of salicylhydroxamic acid and 1,10-phen-anthroline; equilibrium and antimicrobial activity studies. Bull. Chem. Soc. Ehiopia 28(3), 393–402 (2014)
Rajhi, A.Y., Ju, Y.-H., Angkawijaya, A.E., Fazary, A.E.: Complex formation equilibria and molecular structure of divalent metal ions–vitamin B3–glycine oligopeptides systems. J. Solution Chem. 42(12), 2409–2442 (2013)
Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Cu(II), Co(II), and Ni(II)-antioxidative phenolate-glycine peptide systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57(12), 3443–3451 (2012)
Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Ismadji, S., Ju, Y.-H.: Nickel and cobalt complexes of non-protein l-norvaline and antioxidant ferulic acid: potentiometric and spectrophotometric studies. J. Solution Chem. 41(7), 1156–1164 (2012)
Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Complex stability and molecular structure studies of divalent metal ion with L-norleucine and vitamin b3. J. Chem. Eng. Data 56(12), 4549–4555 (2011)
Fazary, A.E., Hernowo, E., Angkawijaya, A.E., Chou, T.-C., Lin, C.H., Taha, M., Ju, Y.-H.: Complex formation between ferric(III), chromium(III), and cupric(II) metal ions and (O, N) and (O, O) donor ligands with biological relevance in aqueous solution. J. Solution Chem. 40(12), 1965–1986 (2011)
Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic acid. J. Chem. Eng. Data 56(3), 532–540 (2011)
Fazary, A.E., Taha, M., Ju, Y.-H.: Iron complexation studies of gallic acid. J. Chem. Eng. Data 54(1), 35–42 (2009)
Khalil, M.M., Fazary, A.E.: Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 135(12), 1455–1474 (2004)
Fazary, A.E., Al-Shihri, A.S., Alfaiiy, M.Y., Saleh, K., Alshehri, M., Elbehairi, S.I., Ju, Y.-H.: Microbial production of four biodegradable siderophores under submerged. Internat. J. Biol. Macromol. 88, 527–541 (2016)
Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)
Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)
Metrohm, A.G.: Instructions for use for 6.6012.X40 software TiNet 2.4 CH-9101 Herisau (Switzerland), 1-148
Gans, P., O’Sullivan, B.: Glee, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., .Montgomery, J.A.., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 (ed.): Gaussian, Inc.: Wallingford CT (2009)
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1998)
Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)
Ramos, J.M., Versiane, O.J.F., Soto, C.A.T.: J., F., Soto, C. A. T.: Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta A 68, 1370–1378 (2007)
Ramos, J.M., Versiane, O., Felcman, J., Soto, C.A.: T. FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate–guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta A 72, 182–189 (2009)
Chachkov, D.V., Mikhailov, O.V.: DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion–dithiooxamide–formaldehyde. Russ. J. Inorg. Chem. 54, 1952–1956 (2009)
Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S.: Ab initio molecular orbital study of the complexing behavior of N-ethyl-1naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A: Chem. 146, 163–168 (2002)
Irving, H., Williams, R.J.P.: The stability of transition—metal complexes. J. Chem. Soc. 3, 3192–3210 (1953)
Pearson, R.J.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)
Funding
This work was financially supported by King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, through the project number MS_34_41.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fazary, A.E., Al-Shihri, A.S., Saleh, K.A. et al. Di- and Tri-valent Metal Ions Interactions with Four Biodegradable Hydroxamate and Cataecholate Siderophores: New Insights into Their Complexation Equilibria. J Solution Chem 45, 732–749 (2016). https://doi.org/10.1007/s10953-016-0475-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0475-9