Skip to main content
Log in

Di- and Tri-valent Metal Ions Interactions with Four Biodegradable Hydroxamate and Cataecholate Siderophores: New Insights into Their Complexation Equilibria

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction of a number of divalent and trivalent metal ions [iron(III), chromium(III) copper(II), cobalt(II) and nickel(II)] with four isolated and purified microbial catecholate and hydroxamate siderophores was studied using the pH-potentiometric technique to investigate the complexation behavior of these systems as these systems could mimic many biological interactions of the siderophore chelating agent. The protonation constants of these new siderophore analogues as well their binary complex species stability constants were determined using the Hyperquad 2008 estimation model program. From the determined stability constants of the metal complex species, the concentration distribution of the various metal ion complex species involving isolated siderophore analogues in solutions was estimated using the HySS 2009 modeling program. The complex species distribution diagrams were plotted and discussed. Additionally, the Gibbs energies and the molecular structures of the formed complex species were evaluated and predicted using Gaussian 09 software for molecular modeling and density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cornelis, P., Matthijs, S.: Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4(12), 787–798 (2002)

    Article  CAS  Google Scholar 

  2. Stintzi, A., Raymond, K.N., Olson, M.O.J., Arceneaux, J.E.L., Clem, L.W., Byers, B.R.: Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aeromonas hydrophila: direct measurement of individual microscopic rate constants. J. Biol. Inorg. Chem. 5(1), 57–66 (2000)

    Article  CAS  Google Scholar 

  3. Bultreys, A., Gheysen, I., de Hoffmann, E.: Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Appl. Environ. Microbiol. 72(6), 3814–3825 (2006)

    Article  CAS  Google Scholar 

  4. Guterman, L.D.: Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 114(3), 1225–1230 (1973)

    CAS  Google Scholar 

  5. Miles, A., Khimji, P.L.: Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J. Med. Microbiol. 8(4), 477–490 (1975)

    Article  CAS  Google Scholar 

  6. O’Brien, G., Gibson, F.: The structure of enterochelin and related 2,3-dihydroxy-N-benzoyneconjugates from Eschericha coli. Biochim. Biophys. Acta - General Subjects 215(2), 393–402 (1970)

    Article  Google Scholar 

  7. Bister, B., Bischoff, D., Nicholson, G.J., Valdebenito, M., Schneider, K., Winkelmann, G., Hantke, K., Süssmuth, R.D.: The structure of salmochelins:C-glucosylated enterobactins of Salmonella enterica. Biometals 17(4), 471–481 (2004)

    Article  CAS  Google Scholar 

  8. Martinez, J.S., Haygood, M.G., Butler, A.: Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnol. Oceanogr 46(2), 420–424 (2001)

    Article  Google Scholar 

  9. Bergeron, R.J., Singh, S., Bharti, N.: Synthesis of heterobactins A and B and Nocardia heterobactin. Tetrahedron 67, 3163–3169 (2011)

    Article  CAS  Google Scholar 

  10. Smits, T.H.M., Duffy, B.: Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Archiv. Microbiol. 193(10), 693–699 (2011)

    Article  CAS  Google Scholar 

  11. Patel, P., Song, L., Challis, G.L.: Distinct extracytoplasmic siderophore binding proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor A3(2). Biochem. 49(37), 8033–8042 (2010)

    Article  CAS  Google Scholar 

  12. Chiani, M., Akbarzadeh, A., Farhangi, A., Mazinani, M., Saffari, Z., Emadzadeh, K., Mehrabi, M.R.: Optimization of culture medium to increase the production of desferrioxamine B (Desferal) in Streptomyces pilosus. Pak. J. Biol. Sciences 13(11), 546–550 (2010)

    Article  CAS  Google Scholar 

  13. Neilands, J.B.: Methodology of siderophores. Struct. Bond. 58, 1–24 (1984)

    Article  CAS  Google Scholar 

  14. Hossain, M.B., Jalal, M.A.F., Van Der Helm, D.: Gallium-complex of anguibactin, a siderophore from fish pathogen Vibrio anguillarum. J. Chem. Crystallography 28(1), 57–60 (1998)

    Article  CAS  Google Scholar 

  15. Atkin, C.L., Neilands, J.B., Phaff, H.J.: Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103(3), 722–733 (1970)

    CAS  Google Scholar 

  16. Zajdowicz, S., Haller, J.C., Krafft, A.E., Hunsucker, S.W., Mant, C.T., Duncan, M.W., Hodges, R.S., Jones, D.N.M., Holmes, R.K.: Purification and structural characterization of siderophore (Corynebactin) from Corynebacterium diphtheria. PLoS ONE 7(4), e34591 (2012)

    Article  CAS  Google Scholar 

  17. Bluhm, M.E., Kim, S.S., Dertz, E.A., Raymond, K.N.: Corynebactin and enterobactin: related siderophores of opposite chirality. J. Am. Chem. Soc. 124(11), 2436–2439 (2002)

    Article  CAS  Google Scholar 

  18. Duhme, A.-K., Hider, R.C., Naldrett, M.J., Pau, R.N.: The stability of the molybdenum–azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. J. Biol. Inorg. Chem. 3(5), 520–526 (1998)

    Article  CAS  Google Scholar 

  19. Espinet, P., Lorenzo, C., Miguel, J.A., Bois, C., Jeannin, Y.: Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thiocarboxylate), pdtc. crystal structure of (n-Bu4N)[Pd(pdtc)Br]. Inorg. Chem. 33(9), 2052–2055 (1994)

    Article  CAS  Google Scholar 

  20. Anderegg, G., Raber, M.: Metal complex formation of a new siderophore desferrithiocin and of three related ligands. J. Chem. Soc. - Series 17, 1194–1196 (1990)

    Google Scholar 

  21. Brandel, J., Humbert, N., Elhabiri, M., Schalk, I.J., Mislin, G.L.A., Albrecht-Gary, A.-M.: Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Transact. 41(9), 2820–2834 (2012)

    Article  CAS  Google Scholar 

  22. Iglesias, E., Brandariz, I., Jiménez, C., Soengas, R.G.: Iron(III) complexation by Vanchrobactin, a siderophore of the bacterial fish pathogen Vibrio anguillarum. Metallomics 3, 521–528 (2011)

    Article  CAS  Google Scholar 

  23. Fadeev, E.A., Luo, M., Luo, M., Groves, G.T.: Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. J. Am. Chem. Soc. 126(38), 12065–12075 (2004)

    Article  CAS  Google Scholar 

  24. Espada, A., Anta, C., Bragado, A., Rodríguez, J., Jiménez., C.: Synthesis, structure, and molecular dynamics ofgallium complexes of schizokinen and the amphiphilic siderophore Acinetoferrin. J. Am. Chem. Soc. 126(38), 12065–12075 (2004)

    Article  Google Scholar 

  25. Nwugo, C.C., Gaddy, J.A., Zimbler, D.L., Zimbler, D.L., Actis, L.A.: Deciphering the iron response in Acinetobacter baumannii: a proteomics approach. J. Proteomics 74(1), 44–58 (2011)

    Article  CAS  Google Scholar 

  26. Fazary, A.E., Rajhi, A.Q.: Complexation equilibria of vitamin B9, glycine oligopeptides with di- and trivalent metal ions. Asian J. Chem. 27(10), 3872–3876 (2015)

    Article  CAS  Google Scholar 

  27. Fazary, A.E.: Metal complexes of salicylhydroxamic acid and 1,10-phen-anthroline; equilibrium and antimicrobial activity studies. Bull. Chem. Soc. Ehiopia 28(3), 393–402 (2014)

    Article  CAS  Google Scholar 

  28. Rajhi, A.Y., Ju, Y.-H., Angkawijaya, A.E., Fazary, A.E.: Complex formation equilibria and molecular structure of divalent metal ions–vitamin B3–glycine oligopeptides systems. J. Solution Chem. 42(12), 2409–2442 (2013)

    Article  CAS  Google Scholar 

  29. Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Cu(II), Co(II), and Ni(II)-antioxidative phenolate-glycine peptide systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57(12), 3443–3451 (2012)

    Article  CAS  Google Scholar 

  30. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Ismadji, S., Ju, Y.-H.: Nickel and cobalt complexes of non-protein l-norvaline and antioxidant ferulic acid: potentiometric and spectrophotometric studies. J. Solution Chem. 41(7), 1156–1164 (2012)

    Article  CAS  Google Scholar 

  31. Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Complex stability and molecular structure studies of divalent metal ion with L-norleucine and vitamin b3. J. Chem. Eng. Data 56(12), 4549–4555 (2011)

    Article  CAS  Google Scholar 

  32. Fazary, A.E., Hernowo, E., Angkawijaya, A.E., Chou, T.-C., Lin, C.H., Taha, M., Ju, Y.-H.: Complex formation between ferric(III), chromium(III), and cupric(II) metal ions and (O, N) and (O, O) donor ligands with biological relevance in aqueous solution. J. Solution Chem. 40(12), 1965–1986 (2011)

    Article  CAS  Google Scholar 

  33. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic acid. J. Chem. Eng. Data 56(3), 532–540 (2011)

    Article  CAS  Google Scholar 

  34. Fazary, A.E., Taha, M., Ju, Y.-H.: Iron complexation studies of gallic acid. J. Chem. Eng. Data 54(1), 35–42 (2009)

    Article  CAS  Google Scholar 

  35. Khalil, M.M., Fazary, A.E.: Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 135(12), 1455–1474 (2004)

    Article  CAS  Google Scholar 

  36. Fazary, A.E., Al-Shihri, A.S., Alfaiiy, M.Y., Saleh, K., Alshehri, M., Elbehairi, S.I., Ju, Y.-H.: Microbial production of four biodegradable siderophores under submerged. Internat. J. Biol. Macromol. 88, 527–541 (2016)

    Article  CAS  Google Scholar 

  37. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  38. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  39. Metrohm, A.G.: Instructions for use for 6.6012.X40 software TiNet 2.4 CH-9101 Herisau (Switzerland), 1-148

  40. Gans, P., O’Sullivan, B.: Glee, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)

    Article  CAS  Google Scholar 

  41. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., .Montgomery, J.A.., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 (ed.): Gaussian, Inc.: Wallingford CT (2009)

  42. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  43. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1998)

    Article  Google Scholar 

  44. Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  45. Ramos, J.M., Versiane, O.J.F., Soto, C.A.T.: J., F., Soto, C. A. T.: Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta A 68, 1370–1378 (2007)

    Article  Google Scholar 

  46. Ramos, J.M., Versiane, O., Felcman, J., Soto, C.A.: T. FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate–guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta A 72, 182–189 (2009)

    Article  Google Scholar 

  47. Chachkov, D.V., Mikhailov, O.V.: DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion–dithiooxamide–formaldehyde. Russ. J. Inorg. Chem. 54, 1952–1956 (2009)

    Article  Google Scholar 

  48. Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S.: Ab initio molecular orbital study of the complexing behavior of N-ethyl-1naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A: Chem. 146, 163–168 (2002)

    Article  CAS  Google Scholar 

  49. Irving, H., Williams, R.J.P.: The stability of transition—metal complexes. J. Chem. Soc. 3, 3192–3210 (1953)

    Article  Google Scholar 

  50. Pearson, R.J.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, through the project number MS_34_41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Fazary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazary, A.E., Al-Shihri, A.S., Saleh, K.A. et al. Di- and Tri-valent Metal Ions Interactions with Four Biodegradable Hydroxamate and Cataecholate Siderophores: New Insights into Their Complexation Equilibria. J Solution Chem 45, 732–749 (2016). https://doi.org/10.1007/s10953-016-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0475-9

Keywords

Navigation