Skip to main content
Log in

Oxidation Efficiencies of High Spin Fe(II)–Azo Amino Acid Complexes by Potassium Peroxydisulfate: Initial State–Transition State Solvation Effects

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Syntheses of four iron(II)–azo amino acid complexes (1–4) with the general formula [FeIIL2(H2O)2]Cl2·nH2O, where L represents azo amino acid ligands, were carried out by direct mixing of N,N-diethylamino-4-nitrosoaniline, amino acids (alanine, histidine, tryptophan or phenylalanine) and Fe(II) ions in aqueous–methanol media. Azo ligands act as bidentate ligands and coordinate to Fe(II) ions through O-carboxylic and N-azo groups. Complexes 1–4 were characterized by IR, UV–visible spectra, thermogravimetric analyses (TGA) and conductance measurements. Kinetics of 1–4 oxidation by peroxydisulfate ions were studied spectrophotometrically in an aqueous media and in various aqueous–methanol binary mixtures at 25 °C. Kinetics of the oxidation followed pseudo-first-order reaction kinetics, \( k_{\text{obs}} = (k_{2} [{\text{S}}_{2} {\text{O}}_{8}^{2 - } ])[{\text{complex}}] \). Reactivity trends and their rate constants are discussed in terms of polarity, hydrophobicity of 1–4, and solvation effect of methanol. The effect of methanol ratios on the oxidation reaction is analyzed into initial (is) and transition state (ts) components. The decrease in the rate constant of the 1–4 oxidation, as the ratio of methanol increases, is predominantly caused by the effect of methanol on the initial state (ts) or by an increase in the Gibbs energy difference between is and ts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fioriani, C., Fochi, G.: Azo-complexes of bis(cyclopentadienyl)-titanium and -vanadium; model systems for N-N multiple bond activation. J. Chem. Soc., Dalton Trans. 5, 1515–1521 (1983)

    Google Scholar 

  2. Oakes, J., Gratton, P.: Kinetic investigations of azo dye oxidation in aqueous media. J. Chem. Soc., Perkin Trans. II 9, 1857–1864 (1998)

    Article  Google Scholar 

  3. Rau, H.: Spectroscopic properties of organic azo compounds. Angew. Chem. Int. Ed. 12, 224–235 (1973)

    Article  Google Scholar 

  4. Zhou, Y.M., Leng, W.N., Xu, Q.H.: Synthesis of nonlinear optical polyimides containing benzothiazole moiety and their electro-optical and thermal properties. J. Polym. Sci. 42, 9253–9259 (2001)

    Google Scholar 

  5. Guangbin, W., Hou, L., Gan, F.: Optical storage properties of novel azo dye-in-polymer (PMMA) thin films. Phys. Status Solidi A 174, 269–275 (1999)

    Article  Google Scholar 

  6. Shaker, A.M., Adam, M.S.: Synthesis and physico-chemical properties of some novel amino acid azo Fe(II) complexes. Synth. React. Inorg. Met-Org. Nono-Met. Chem. 33, 1081–1104 (2003)

    Article  CAS  Google Scholar 

  7. Wang, X., Wang, Y., Li, J., Zhang, Z.: The new synthesis of azo compounds by 4-hydroxy-2,2,6,6-tertramethyl-l-piperidinyloxyl as the phases transfer dehydrogenation catalyst. Synth. Commun. 29, 157–162 (1999)

    Article  Google Scholar 

  8. Blandamer, M.J., Burgess, J.: Initial state and transition state solvation in inorganic reactions. Coord. Chem. Rev. 31, 93–121 (1980)

    Article  CAS  Google Scholar 

  9. Sieklucka, B., Macartney, D.H.: Kinetics and mechanisms of the oxidation of the octacyanoniobate(III)ion by oxyanions in alkaline aqueous media. Transit. Met. Chem. 21, 200–205 (1996)

    Article  CAS  Google Scholar 

  10. Chen, M.H., Lee, S., Liu, S., Yeh, A.: Kinetic Studies of the reactions of pentacyanoferrate(ii) complexes with peroxydisulfate. Inorg. Chem. 35, 2627–2629 (1996)

    Article  CAS  Google Scholar 

  11. Ramesh, K., Shylaja, S., Rajanna, K.C., Reddy, P.G., Saiprakash, P.K.: Polyethylene glycol-mediated kinetic study of nitrodecarboxylation of α,β-unsaturated acids by Blau’s Fe(III) bipy complex. Int. J. Chem. Kinet. 46, 126–137 (2014)

    Article  CAS  Google Scholar 

  12. Rodriguez, A., Lopez-Cornejo, P., Perez, P., Muriel, F., Sanchez, F., Burgess, J.: Salt effects upon the S2O8 2− + Ru(NH3)5pz2+ electron transfer reaction. Int. J. Chem. Kinet. 31, 485–490 (1999)

    Article  CAS  Google Scholar 

  13. Geselowitz, D.A., Taube, H.: Stereoselectivity in electron-transfer reactions. J. Am. Chem. Soc. 102, 4525–4526 (1980)

    Article  CAS  Google Scholar 

  14. Wei, S.K., Yen, A.: Kinetic study of the Ru(II) catalyzed oxidation of pentacyanoferrate(II) complexes by peroxydisulfate. J. Chin. Chem. Soc. 46, 905–910 (1999)

    Article  CAS  Google Scholar 

  15. Benko, J., Vollarova, O., Burgess, J., Lopez, P.: Correlation of volumes and entropies of activation for oxidation of coordinated sulfur in bis-ethylenediaminecobalt(III) complexes by peroxodisulphate, hydrogen peroxide and periodate and for peroxodisulphate oxidation of diimine–cyanide–iron(II) complexes. Tranition Met. Chem. 25, 674–679 (2000)

    Article  CAS  Google Scholar 

  16. Babshet, R.M., Gokavi, G.S.: Kinetics and mechanism of oxidation of aurate(I) by peroxydisulphate in aqueous hydrochloric acid. Int. J. Chem. Kinet. 34, 589–594 (2002)

    Article  CAS  Google Scholar 

  17. Farah, S.F.A., Sulfab, Y., Adnan, R.: Kinetics and mechanism of oxidation of some nickel(II)–imine–oxime complexes by peroxodisulfate in aqueous acidic solutions. Transition Met. Chem. 39, 247–252 (2014)

    Article  CAS  Google Scholar 

  18. Hildenbrand, K.: The \( {\text{SO}}_{4}^{-} \) induced oxidation of 2’-deoxyuridine-5’-phosphate, uridine-5-phosphate and thymidine-5-phosphate. An ESR study in aqueous solution. Z. Naturforsch. 45, 47–58 (1990)

    CAS  Google Scholar 

  19. Shaker, A.M., El-Cheikh, F.M., Adam, M.S.S.: Kinetics and mechanism of the reaction of novel low spin Fe(II)–azo amino acid complexes with hydrogen peroxide in aqueous solutions and in aqua–methanol binary mixtures. Kinet. Catal. 52, 62–71 (2011)

    Article  CAS  Google Scholar 

  20. Shaker, A.M., Awad, A.M., Adam, M.S.S.: Salt effects on reactivity of some Fe(II)–azo complexes catalyzing disproportionation of hydrogen peroxide. Monatsh. Chem. 137, 421–431 (2006)

    Article  CAS  Google Scholar 

  21. Lalitham, J., Vijaraghavan, V.R.: Kinetics of oxidation of nickel(II) aza macrocycles by peroxydisulphate in aqueous media. J. Chem. Sci. 112, 507–514 (2000)

    Article  CAS  Google Scholar 

  22. Truong, G.L., De Laat, J.D., Legube, B.: Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res. 38, 2384–2394 (2004)

    Article  CAS  Google Scholar 

  23. Apelblat, A., Korin, E., Mazurola, E.: Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chem. Thermodyn. 33, 61–69 (2001)

    Article  CAS  Google Scholar 

  24. Burgess, J., Shraydeh, B.: Reactions of tris-diimine and diimine-cyanide complexes of iron(II) with peroxoanions in solution. Polyhedron 11, 2015–2019 (1992)

    Article  CAS  Google Scholar 

  25. Nassr, L.A.E., Shaker, A.M.: Kinetic and mechanistic aspects of reactivity of the oxidation of some Fe(II)–tris Schiff base complexes by peroxydisulfate: spectrophotometric tracer and solvent effect on the reactivity. Int. J. Chem. Kinet. 46, 701–710 (2014)

    Article  Google Scholar 

  26. Sharma, P.K., Dubey, S.N.: Synthesis and structural studies of iron(II) complexes with N-salicylideneand N-(2-hydroxy-1-naphthylidene)amino acids. Indian J. Chem. 33A, 1113–1115 (1994)

    CAS  Google Scholar 

  27. Blandamer, M.J., Burgess, J., Clark, B., Duce, P.P., Hakin, A.W., Gosal, N., Radulovic, S., Guardado, P., Sanchez, F., Hubbard, C.D., Abu-Gharib, E.A.: Solubilities of salts and kinetics of reaction between hydroxide ions and iron(II–di-imine complexes in water–methanol mixtures. Derivation of single-ion transfer chemical potentials and their application to analysis of solvent effects on kinetic parameters. J. Chem. Soc., Faraday Trans. 1(82), 1471–1514 (1986)

    Article  Google Scholar 

  28. Mohamad, A.D., Adam, M.S.S.: Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects. Chem. Pap. 67, 464–476 (2013)

    Article  CAS  Google Scholar 

  29. Alshehri, S., Blandamer, M.J., Burgess, J., Guardado, P., Hubbard, C.D.: Solvation and reactivity of the low-spin trisdiimine iron(II) complex of the schiff base ligand derived from 2-benzoylpyridine and 3,4-dimethylaniline, [Fe(Me2bsb)3]2+. Polyhedron 12, 445–454 (1993)

    Article  CAS  Google Scholar 

  30. Myhovich, M.I., Kelman, V.A.: Theoretical and experimental study of spectroscopic characterizatics of aromatic amino acids. Ukr. J. Phys. 59, 581–588 (2014)

    Article  CAS  Google Scholar 

  31. Geary, W.J.: The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)

    Article  CAS  Google Scholar 

  32. Angelici, R.J.: Synthesis and Technique in Inorganic Chemistry, 2nd edn. Saunders Company, Philadelphia (1977)

    Google Scholar 

  33. Haines, R.I., Pieda, D., Goulding, W.: Structure of tetraphenylarsonium tricyano-2,2′,6′,2′′-terpyridylferrate(II), AsPh4[FeII(terpy)(CN)3]; and kinetics of oxidation of the complex anion by peroxodisulfate in water and in binary aqueous mixtures. Transit. Met. Chem. 23, 763–769 (1998)

    Article  CAS  Google Scholar 

  34. Haines, R.I., Rowley, J.E.: Structure and kinetics of oxidation of amphiphilic nickel(II) pentaazamacrocycles by peroxodisulfate and by a nickel(III) pendant-arm macrocycle. J. Incl. Phenom. Macro. Chem. 47, 25–32 (2003)

    Article  CAS  Google Scholar 

  35. Haines, R.I., Baldwin, R.: Initial state versus transition state solvation effects on the kinetics of oxidation of nickel(II) dioxocyclam by peroxodisulfate. Transition Met. Chem. 27, 284289 (2002)

    Article  Google Scholar 

  36. Rotzinger, F.P., Weber, J., Daul, C.: Base hydrolysis of (acidato)(pentaamine) complexes with inert metal centers: electronic structure of the intermediates, requirements for their formation, and the unique reactivity of the complexes of cobalt(III). Helv. Chim. Acta 74, 1247–1263 (1991)

    Article  CAS  Google Scholar 

  37. Burgess, J., Galema, S.A., Hubbard, C.D.: Volumes of activation for dissociation of the cations of [tris-2,2′-bipyridyl]iron(II), [tris-1,10- phenanthroline]iron(II) and of other diimine iron(II) complexes in aqueous solution. Polyhedron 10, 703–709 (1991)

    Article  CAS  Google Scholar 

  38. Abu-Gharib, E.A., Gosal, N., Burgess, J.: Kinetics of base hydrolysis of low-spin iron(II)-diimine complexes in methanol–water mixtures. Croat. Chem. Acta 74, 545–558 (2001)

    Google Scholar 

  39. Abu-Gharib, E.A., Komy, Z., Eltaher, A., Desoky, A., Burgess, J.: Kinetic, solvation and reactivity studies of iron(II) complexes of monoxime and dioxime ligands. Transit. Met. Chem. 30, 357–366 (2005)

    Article  CAS  Google Scholar 

  40. El Marackchi, M., Tissier, C., Juillard, J.: Gibbs functions for transfer of divalent metal cations from water to water + methanol mixtures using potentiometry, polarography and solubility measurements. J. Electroanal. Chem. 420, 267–278 (1997)

    Article  Google Scholar 

  41. Blandamer, J., Burgess, M.J., Reed, N.V., Wellings, P.: Kinetics of peroxodisulphate oxidation of dicyanobis-(2,2′-bipyridyl)iron(II) and of the tetracyano-2,2′-bipyridylferrate(II) anion; initial state and transition state effects in reactions of tris-diimine and diimine-cyanide complexes of iron(II). J. Inorg. Nucl. Chem. 43, 3245–3251 (1981)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly thank Vice-Presidency of Graduate Studies and Academic Research in King Faisal University for its financial support and encouragement to produce this work as a scientific project (Project Number 160034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaker S. Adam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, M.S.S., El-Ayaan, U. & Mohamad, A.D.M. Oxidation Efficiencies of High Spin Fe(II)–Azo Amino Acid Complexes by Potassium Peroxydisulfate: Initial State–Transition State Solvation Effects. J Solution Chem 45, 772–790 (2016). https://doi.org/10.1007/s10953-016-0469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0469-7

Keywords

Navigation