Abstract
Density, viscosity, surface tension, and friccohesity are reported for the hexahydrate nitrate salts of praseodymium, samarium, and gadolinium from 0.025 to 0.155 mol·kg−1 in water and in a 0.1 mol·kg−1 aqueous urea solution at 298.15 K and atmospheric pressure. From the densities, the apparent molar volumes, limiting apparent molar volumes, and apparent molar transfer volumes have been calculated as were viscosity B coefficients from the viscosities. These physicochemical parameters are discussed in terms of hydrogen bonding and ion–hydrophilic interactions. An attempt has thus been made to investigate the influence of urea on the interaction of lanthanide nitrates with water and the critical role being played by urea as a structure breaker.
Similar content being viewed by others
References
Kondoh, M., Ohshima, Y., Tsubouchi, M.: Ion effects on the structure of water studied by terahertz time-domain spectroscopy. Chem. Phys. Lett. 591, 317–322 (2014)
Guardia, E., Marti, J., Garcia-Tarres, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117, 63–67 (2005)
Luzar, A.: Water hydrogen-bond dynamics close to hydrophobic and hydrophilic groups. Faraday Discuss. 103, 29–40 (1996)
Nag, A., Chakraborty, D., Chandra, A.: Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. J. Chem. Sci. 120, 71–77 (2008)
Sadeghi, M., Held, C., Samieenasab, A., Ghotbi, C., Abdekhodaie, M.J., Taghikhani, V., Sadowski, G.: Thermodynamic properties of aqueous salt containing urea solutions. Fluid Phase Equilib. 325, 71–79 (2012)
Sadeghi, M., Held, C., Ghotbi, C., Abdekhodaie, M.J., Sadowski, G.: Thermodynamic properties of aqueous glucose–urea–salt systems. J. Solution Chem. 43, 1110–1131 (2014)
Rezus, Y.L.A., Bakker, H.J.: Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. USA 103, 18417–18420 (2006)
Berny, F., Wipff, G.: Interaction of M3+ lanthanide cations with amide, urea, thioamide and thiourea ligands: a quantum mechanical study. J. Chem. Soc. Perkin Trans. 2, 73–82 (2001)
Jozwiak, M., Tyczynska, M., Bald, A.: Viscosity of urea in the mixture of N,N-dimethylformamide and water. J. Chem. Eng. Data 58, 217–224 (2013)
Stumpe, M.C., Grubmuller, H.: Aqueous urea solutions: structure, energetics, and urea aggregation. J. Phys. Chem. B 111, 6220–6228 (2007)
Zangi, R., Zhou, R., Berne, B.J.: Urea’s action on hydrophobic interactions. J. Am. Chem. Soc. 131, 1535–1541 (2009)
Pace, C.N., Beatrice, M.P., Despointes, H., Fu, H., Takano, K., Scholtz, J.M., Grimsley, G.R.: Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci. 19, 929–943 (2010)
Möglich, A., Krieger, F., Kiefhaber, T.: Molecular basis for the effect of urea and guanidinium chloride on the dynamics of unfolded polypeptide chains. J. Mol. Biol. 7, 153–162 (2005)
Rocco, A.G., Mollica, L., Ricchiuto, P., Baptista, A.M., Gianazza, E., Eberini, I.: Characterization of the protein unfolding processes induced by urea and temperature. Biophys. J. 94, 2241–2251 (2008)
Camilloni, C., Rocco, A.G., Eberini, I., Gianazza, E., Broglia, R.A., Tiana, G.: Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophys. J. 94, 4654–4661 (2008)
Stumpe, M.C., Grubmuller, H.: Polar or apolar—The role of polarity for urea-induced protein denaturation. PLoS Comput. Biol. 4, 1–10 (2008)
Kumar, D., Chandra, A., Singh, M.: Influence of urea on shifting hydrophilic to hydrophobic interactions of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 with BSA in aqueous citric acid: a volumetric, viscometric, and surface tension study. J. Chem. Eng. Data 59, 3643–3651 (2014)
Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005)
Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Guitierrez, L., McDowell, L.S., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1096 (1975)
Taylor, P.A., Schuh, D.L.: Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor, pp. 1–13. Oak Ridge National Laboratory Report, Oak Ridge (2009)
Parmar, M.L., Sharma, P., Guleria, M.K.: A comparative study of partial molar volumes of some hydrated and anhydrous salts of transition metal sulphates and magnesium sulphate in water at different temperatures. Indian J. Chem. 48, 57–62 (2009)
Bonal, C., Morel, J.P., Desrosiers, N.M.: Interactions between lanthanide cations and nitrate anions in water. J. Chem. Soc. Faraday Trans. 94, 1431–1436 (1998)
Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)
Rizkalla, E.N., Choppin, G.R.: Hydration and hydrolysis of lanthanides. Handbook on the Physics and Chemistry of Rare Earths, vol. 15. North Holland, Amsterdam (1991)
Chatterjee, S., Campbell, E.L., Neiner, D., Pence, N.K., Robinson, T.A., Levitskaia, T.G.: Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: extended Pitzer and Bromley treatments. J. Chem. Eng. Data 60, 2974–2988 (2015)
Bonal, C., Morel, J.P., Desrosiers, N.M.: Interactions between lanthanide cations and nitrate anions in water. J. Chem. Soc. Faraday Trans. 92, 4957–4963 (1996)
Spedding, F.H., Pikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966)
Spedding, F.H., Cullen, P.F., Habenschuss, A.: Apparent molal volumes of some dilute aqueous rare earth salt solutions at 25 °C. J. Phys. Chem. 78, 1106–1110 (1974)
Rard, J.A.: Osmotic and activity coefficients of aqueous La(NO3)3 and densities and apparent molal volumes of aqueous Eu(NO3)3 at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)
Singh, M.: Survismeter types I and II for surface tension, viscosity measurements liquids for academic, research and development studies. J. Biochem. Biophys. Methods 67, 151–161 (2006)
Kepak, F., Kriva, J.: Self-diffusion of trace concentrations of 144Ce, 147Pm and 155Eu in water solutions. J. Inorg. Nucl. Chem. 33, 1741–1748 (1971)
Besbes, R., Ouerfelli, N., Abderabba, M., Lindqvist-Reis, P., Latrous, H.: Investigation of the self-diffusion coefficients of trivalent Gd3+ in aqueous solutions: the effect of hydrolysis and nitrate ion association. Mediterr. J. Chem. 1, 334–346 (2012)
Spedding, F.H., Rard, J.A., Saeger, V.W.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. II. Rare earth chlorides. J. Chem. Eng. Data 19, 373–378 (1974)
Rard, J.A., Spedding, F.H.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. II. Rare earth chlorides. J. Chem. Eng. Data 79, 257–262 (1975)
Singh, M.: Experiments for hydrophilic and hydrophobic interactions analysis of n-methyl ureas with water using density and surface tension. Chemistry 18, 139–145 (2009)
Narlikar, J.V., Khandelwal, B.L.: Chemistry Part I, Textbook for Class XII, the d- and f-Block Elements, pp. 227–230. N.C.E.R.T, New Delhi (2006)
Masson, D.O.: Solute molecular volumes in relation to solvation and ionization. Philos. Mag. 8, 218–235 (1929)
Sadeghi, R., Shekaari, H., Hosseini, R.: Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J. Chem. Thermodyn. 41, 273–289 (2000)
Gucker, F.T., Gage, F.W., Moser, C.E.: The densities of aqueous solutions of urea at 25 and 30 °C and the apparent molal volume of urea. J. Am. Chem. Soc. 60, 2582–2588 (1938)
Ruas, A., Simonin, J.P., Turq, P., Moisy, P.: Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J. Phys. Chem. B 109, 23043–23050 (2005)
Borel, A., Toth, E., Helm, L., Janossy, A., Merbach, A.E.: EPR on aqueous Gd3+ complexes and a new analysis method considering both line widths and shifts. Phys. Chem. Chem. Phys. 2, 1311–1317 (2000)
Cossy, C., Helm, L., Merbach, A.E.: Oxygen-17 nuclear magnetic resonance kinetic study of water exchange on the lanthanide(III) aqua ions. Inorg. Chem. 27, 1973–1979 (1988)
Cossy, C., Helm, L., Merbach, A.E.: High-pressure NMR study. 38. Water-exchange mechanisms on the terbium to thulium octaaqualanthanide(III) ions: a variable-pressure oxygen-17 NMR study. Inorg. Chem. 28, 2699–2703 (1989)
Kanno, H., Hiraishi, J.: Raman study of aqueous rare-earth nitrate solutions in liquid and glassy states. J. Phys. Chem. 88, 2787–2792 (1984)
Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)
Falkenhagen, H., Vernon, E.L.: The viscosity of strong electrolyte solutions according to electrostatic theory. Philos. Mag. 14, 537–565 (1932)
Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc. Faraday Trans. I 70, 795–806 (1974)
Kay, R.L., Vituccio, T., Zawoyski, C., Evans, D.F.: Viscosity B coefficients for the tetraalkylammonium halides. J. Phys. Chem. 70, 2336–2341 (1966)
Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)
Collins, K.D.: Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311 (2004)
Krestov, G.A.: Thermodynamics of Solvation. Ellis Horwood, New York (1990)
Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)
Hribar, B., Southall, N.T., Vlachy, V., Dill, K.A.: How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302–12311 (2002)
Zhao, L., Ma, K., Yang, Z.: Changes of water hydrogen bond network with different externalities. Int. J. Mol. Sci. 16, 8454–8489 (2015)
Rard, J.A.: Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev. 85, 555–582 (1985)
Wood, S.A.: The aqueous geochemistry of the rare earth elements and yttrium. Part I. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990)
Haas, J.R., Shock, E.L., Sassani, D.C.: Rare earth elements in hydro thermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995)
Zhang, R., Zhao, G.S., Wu, W.C.: Structures and hydrogen bonding interactions in urea–water system studied by all-atom MD simulation and chemical shifts in NMR spectrum. J. Chem. Phys. 22, 511–516 (2009)
Frank, H.S., Franks, F.: Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968)
Leroy, P., Lassin, A., Azaroual, M., Andre, L.: Predicting the surface tension of aqueous 1:1 electrolyte solutions at high salinity. Geochim. Cosmochim. Acta 74, 5427–5442 (2010)
Chandra, A., Patidar, V., Singh, M., Kale, R.K.: Physicochemical and friccohesity study of glycine, l-alanine and l-phenylalanine with aqueous methyltrioctylammonium and cetylpyridinium chloride from T = (293.15 to 308.15) K. J. Chem. Thermodyn. 65, 18–28 (2013)
Bielecki, B., Krajka, A.: The framework dedicated to three phase flows wellbore modelling. Math. Probl. Eng. 2015, 1–13 (2015)
Acknowledgments
Authors are highly thankful to Central University of Gujarat, Gandhinagar for financial and infrastructural support and the use of experimental facilities.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kumar, D., Chandra, A. & Singh, M. Effect of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 on Aqueous Solution Properties of Urea: A Volumetric, Viscometric, Surface Tension, and Friccohesity Study at 298.15 K and 0.1 MPa. J Solution Chem 45, 750–771 (2016). https://doi.org/10.1007/s10953-016-0466-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0466-x