Skip to main content

Advertisement

Log in

Effect of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 on Aqueous Solution Properties of Urea: A Volumetric, Viscometric, Surface Tension, and Friccohesity Study at 298.15 K and 0.1 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density, viscosity, surface tension, and friccohesity are reported for the hexahydrate nitrate salts of praseodymium, samarium, and gadolinium from 0.025 to 0.155 mol·kg−1 in water and in a 0.1 mol·kg−1 aqueous urea solution at 298.15 K and atmospheric pressure. From the densities, the apparent molar volumes, limiting apparent molar volumes, and apparent molar transfer volumes have been calculated as were viscosity B coefficients from the viscosities. These physicochemical parameters are discussed in terms of hydrogen bonding and ion–hydrophilic interactions. An attempt has thus been made to investigate the influence of urea on the interaction of lanthanide nitrates with water and the critical role being played by urea as a structure breaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kondoh, M., Ohshima, Y., Tsubouchi, M.: Ion effects on the structure of water studied by terahertz time-domain spectroscopy. Chem. Phys. Lett. 591, 317–322 (2014)

    Article  CAS  Google Scholar 

  2. Guardia, E., Marti, J., Garcia-Tarres, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117, 63–67 (2005)

    Article  CAS  Google Scholar 

  3. Luzar, A.: Water hydrogen-bond dynamics close to hydrophobic and hydrophilic groups. Faraday Discuss. 103, 29–40 (1996)

    Article  CAS  Google Scholar 

  4. Nag, A., Chakraborty, D., Chandra, A.: Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. J. Chem. Sci. 120, 71–77 (2008)

    Article  CAS  Google Scholar 

  5. Sadeghi, M., Held, C., Samieenasab, A., Ghotbi, C., Abdekhodaie, M.J., Taghikhani, V., Sadowski, G.: Thermodynamic properties of aqueous salt containing urea solutions. Fluid Phase Equilib. 325, 71–79 (2012)

    Article  CAS  Google Scholar 

  6. Sadeghi, M., Held, C., Ghotbi, C., Abdekhodaie, M.J., Sadowski, G.: Thermodynamic properties of aqueous glucose–urea–salt systems. J. Solution Chem. 43, 1110–1131 (2014)

    Article  CAS  Google Scholar 

  7. Rezus, Y.L.A., Bakker, H.J.: Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. USA 103, 18417–18420 (2006)

    Article  CAS  Google Scholar 

  8. Berny, F., Wipff, G.: Interaction of M3+ lanthanide cations with amide, urea, thioamide and thiourea ligands: a quantum mechanical study. J. Chem. Soc. Perkin Trans. 2, 73–82 (2001)

    Article  Google Scholar 

  9. Jozwiak, M., Tyczynska, M., Bald, A.: Viscosity of urea in the mixture of N,N-dimethylformamide and water. J. Chem. Eng. Data 58, 217–224 (2013)

    Article  CAS  Google Scholar 

  10. Stumpe, M.C., Grubmuller, H.: Aqueous urea solutions: structure, energetics, and urea aggregation. J. Phys. Chem. B 111, 6220–6228 (2007)

    Article  CAS  Google Scholar 

  11. Zangi, R., Zhou, R., Berne, B.J.: Urea’s action on hydrophobic interactions. J. Am. Chem. Soc. 131, 1535–1541 (2009)

    Article  CAS  Google Scholar 

  12. Pace, C.N., Beatrice, M.P., Despointes, H., Fu, H., Takano, K., Scholtz, J.M., Grimsley, G.R.: Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci. 19, 929–943 (2010)

    Article  Google Scholar 

  13. Möglich, A., Krieger, F., Kiefhaber, T.: Molecular basis for the effect of urea and guanidinium chloride on the dynamics of unfolded polypeptide chains. J. Mol. Biol. 7, 153–162 (2005)

    Article  Google Scholar 

  14. Rocco, A.G., Mollica, L., Ricchiuto, P., Baptista, A.M., Gianazza, E., Eberini, I.: Characterization of the protein unfolding processes induced by urea and temperature. Biophys. J. 94, 2241–2251 (2008)

    Article  CAS  Google Scholar 

  15. Camilloni, C., Rocco, A.G., Eberini, I., Gianazza, E., Broglia, R.A., Tiana, G.: Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophys. J. 94, 4654–4661 (2008)

    Article  CAS  Google Scholar 

  16. Stumpe, M.C., Grubmuller, H.: Polar or apolar—The role of polarity for urea-induced protein denaturation. PLoS Comput. Biol. 4, 1–10 (2008)

    Article  Google Scholar 

  17. Kumar, D., Chandra, A., Singh, M.: Influence of urea on shifting hydrophilic to hydrophobic interactions of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 with BSA in aqueous citric acid: a volumetric, viscometric, and surface tension study. J. Chem. Eng. Data 59, 3643–3651 (2014)

    Article  CAS  Google Scholar 

  18. Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005)

    Article  CAS  Google Scholar 

  19. Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Guitierrez, L., McDowell, L.S., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1096 (1975)

    Article  CAS  Google Scholar 

  20. Taylor, P.A., Schuh, D.L.: Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor, pp. 1–13. Oak Ridge National Laboratory Report, Oak Ridge (2009)

    Book  Google Scholar 

  21. Parmar, M.L., Sharma, P., Guleria, M.K.: A comparative study of partial molar volumes of some hydrated and anhydrous salts of transition metal sulphates and magnesium sulphate in water at different temperatures. Indian J. Chem. 48, 57–62 (2009)

    Google Scholar 

  22. Bonal, C., Morel, J.P., Desrosiers, N.M.: Interactions between lanthanide cations and nitrate anions in water. J. Chem. Soc. Faraday Trans. 94, 1431–1436 (1998)

    Article  CAS  Google Scholar 

  23. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  24. Rizkalla, E.N., Choppin, G.R.: Hydration and hydrolysis of lanthanides. Handbook on the Physics and Chemistry of Rare Earths, vol. 15. North Holland, Amsterdam (1991)

    Google Scholar 

  25. Chatterjee, S., Campbell, E.L., Neiner, D., Pence, N.K., Robinson, T.A., Levitskaia, T.G.: Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: extended Pitzer and Bromley treatments. J. Chem. Eng. Data 60, 2974–2988 (2015)

    Article  CAS  Google Scholar 

  26. Bonal, C., Morel, J.P., Desrosiers, N.M.: Interactions between lanthanide cations and nitrate anions in water. J. Chem. Soc. Faraday Trans. 92, 4957–4963 (1996)

    Article  CAS  Google Scholar 

  27. Spedding, F.H., Pikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966)

    Article  CAS  Google Scholar 

  28. Spedding, F.H., Cullen, P.F., Habenschuss, A.: Apparent molal volumes of some dilute aqueous rare earth salt solutions at 25 °C. J. Phys. Chem. 78, 1106–1110 (1974)

    Article  CAS  Google Scholar 

  29. Rard, J.A.: Osmotic and activity coefficients of aqueous La(NO3)3 and densities and apparent molal volumes of aqueous Eu(NO3)3 at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)

    Article  CAS  Google Scholar 

  30. Singh, M.: Survismeter types I and II for surface tension, viscosity measurements liquids for academic, research and development studies. J. Biochem. Biophys. Methods 67, 151–161 (2006)

    Article  CAS  Google Scholar 

  31. Kepak, F., Kriva, J.: Self-diffusion of trace concentrations of 144Ce, 147Pm and 155Eu in water solutions. J. Inorg. Nucl. Chem. 33, 1741–1748 (1971)

    Article  CAS  Google Scholar 

  32. Besbes, R., Ouerfelli, N., Abderabba, M., Lindqvist-Reis, P., Latrous, H.: Investigation of the self-diffusion coefficients of trivalent Gd3+ in aqueous solutions: the effect of hydrolysis and nitrate ion association. Mediterr. J. Chem. 1, 334–346 (2012)

    Article  CAS  Google Scholar 

  33. Spedding, F.H., Rard, J.A., Saeger, V.W.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. II. Rare earth chlorides. J. Chem. Eng. Data 19, 373–378 (1974)

    Article  CAS  Google Scholar 

  34. Rard, J.A., Spedding, F.H.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. II. Rare earth chlorides. J. Chem. Eng. Data 79, 257–262 (1975)

    CAS  Google Scholar 

  35. Singh, M.: Experiments for hydrophilic and hydrophobic interactions analysis of n-methyl ureas with water using density and surface tension. Chemistry 18, 139–145 (2009)

    CAS  Google Scholar 

  36. Narlikar, J.V., Khandelwal, B.L.: Chemistry Part I, Textbook for Class XII, the d- and f-Block Elements, pp. 227–230. N.C.E.R.T, New Delhi (2006)

    Google Scholar 

  37. Masson, D.O.: Solute molecular volumes in relation to solvation and ionization. Philos. Mag. 8, 218–235 (1929)

    Article  CAS  Google Scholar 

  38. Sadeghi, R., Shekaari, H., Hosseini, R.: Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J. Chem. Thermodyn. 41, 273–289 (2000)

    Article  Google Scholar 

  39. Gucker, F.T., Gage, F.W., Moser, C.E.: The densities of aqueous solutions of urea at 25 and 30 °C and the apparent molal volume of urea. J. Am. Chem. Soc. 60, 2582–2588 (1938)

    Article  CAS  Google Scholar 

  40. Ruas, A., Simonin, J.P., Turq, P., Moisy, P.: Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J. Phys. Chem. B 109, 23043–23050 (2005)

    Article  CAS  Google Scholar 

  41. Borel, A., Toth, E., Helm, L., Janossy, A., Merbach, A.E.: EPR on aqueous Gd3+ complexes and a new analysis method considering both line widths and shifts. Phys. Chem. Chem. Phys. 2, 1311–1317 (2000)

    Article  CAS  Google Scholar 

  42. Cossy, C., Helm, L., Merbach, A.E.: Oxygen-17 nuclear magnetic resonance kinetic study of water exchange on the lanthanide(III) aqua ions. Inorg. Chem. 27, 1973–1979 (1988)

    Article  CAS  Google Scholar 

  43. Cossy, C., Helm, L., Merbach, A.E.: High-pressure NMR study. 38. Water-exchange mechanisms on the terbium to thulium octaaqualanthanide(III) ions: a variable-pressure oxygen-17 NMR study. Inorg. Chem. 28, 2699–2703 (1989)

    Article  CAS  Google Scholar 

  44. Kanno, H., Hiraishi, J.: Raman study of aqueous rare-earth nitrate solutions in liquid and glassy states. J. Phys. Chem. 88, 2787–2792 (1984)

    Article  CAS  Google Scholar 

  45. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  46. Falkenhagen, H., Vernon, E.L.: The viscosity of strong electrolyte solutions according to electrostatic theory. Philos. Mag. 14, 537–565 (1932)

    Article  CAS  Google Scholar 

  47. Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc. Faraday Trans. I 70, 795–806 (1974)

    Article  CAS  Google Scholar 

  48. Kay, R.L., Vituccio, T., Zawoyski, C., Evans, D.F.: Viscosity B coefficients for the tetraalkylammonium halides. J. Phys. Chem. 70, 2336–2341 (1966)

    Article  CAS  Google Scholar 

  49. Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    Article  CAS  Google Scholar 

  50. Collins, K.D.: Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311 (2004)

    Article  CAS  Google Scholar 

  51. Krestov, G.A.: Thermodynamics of Solvation. Ellis Horwood, New York (1990)

    Google Scholar 

  52. Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)

    Article  CAS  Google Scholar 

  53. Hribar, B., Southall, N.T., Vlachy, V., Dill, K.A.: How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302–12311 (2002)

    Article  CAS  Google Scholar 

  54. Zhao, L., Ma, K., Yang, Z.: Changes of water hydrogen bond network with different externalities. Int. J. Mol. Sci. 16, 8454–8489 (2015)

    Article  CAS  Google Scholar 

  55. Rard, J.A.: Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev. 85, 555–582 (1985)

    Article  CAS  Google Scholar 

  56. Wood, S.A.: The aqueous geochemistry of the rare earth elements and yttrium. Part I. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990)

    Article  CAS  Google Scholar 

  57. Haas, J.R., Shock, E.L., Sassani, D.C.: Rare earth elements in hydro thermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995)

    Article  CAS  Google Scholar 

  58. Zhang, R., Zhao, G.S., Wu, W.C.: Structures and hydrogen bonding interactions in urea–water system studied by all-atom MD simulation and chemical shifts in NMR spectrum. J. Chem. Phys. 22, 511–516 (2009)

    Google Scholar 

  59. Frank, H.S., Franks, F.: Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968)

    Article  CAS  Google Scholar 

  60. Leroy, P., Lassin, A., Azaroual, M., Andre, L.: Predicting the surface tension of aqueous 1:1 electrolyte solutions at high salinity. Geochim. Cosmochim. Acta 74, 5427–5442 (2010)

    Article  CAS  Google Scholar 

  61. Chandra, A., Patidar, V., Singh, M., Kale, R.K.: Physicochemical and friccohesity study of glycine, l-alanine and l-phenylalanine with aqueous methyltrioctylammonium and cetylpyridinium chloride from T = (293.15 to 308.15) K. J. Chem. Thermodyn. 65, 18–28 (2013)

    Article  CAS  Google Scholar 

  62. Bielecki, B., Krajka, A.: The framework dedicated to three phase flows wellbore modelling. Math. Probl. Eng. 2015, 1–13 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are highly thankful to Central University of Gujarat, Gandhinagar for financial and infrastructural support and the use of experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Chandra, A. & Singh, M. Effect of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 on Aqueous Solution Properties of Urea: A Volumetric, Viscometric, Surface Tension, and Friccohesity Study at 298.15 K and 0.1 MPa. J Solution Chem 45, 750–771 (2016). https://doi.org/10.1007/s10953-016-0466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0466-x

Keywords

Navigation