Abstract
The density (ρ), speed of sound (u) and refractive index (n D) for pure [Emim][EtSO4], 2-methoxyethanol and their binary mixtures were measured using an Anton Paar vibrating tube density and sound velocity meter (DSA 5000 M) and automatic refractometer over the whole composition range as a function of temperature between 298.15 and 328.15 K in steps of 10 K at atmospheric pressure. Experimental values were used to calculate the excess values of molar volumes (\( V_{\text{m}}^{\text{E}} \)), partial molar volumes (\( \overline{V}_{\text{m}}^{\text{E}} \)), partial molar volumes at infinite dilution (\( \overline{V}_{\text{m}}^{{{\text{E,}}\infty }} \)), isentropic compressibility (\( \kappa_{S}^{\text{E}} \)), acoustic impedance (Z E), free length (\( L_{\text{f}}^{\text{E}} \)), speeds of sound (\( u_{{}}^{\text{E}} \)), internal pressure (\( \mathop \pi \nolimits_{i}^{\text{E}} \)), free volume (\( V_{\text{f}}^{\text{E}} \)) and deviations in refractive index ( \( \Delta_{\phi } n_{\text{D}} \)) for the binary mixtures. These properties were fitted to a Redlich–Kister type equation to obtain the binary coefficients and the standard deviations. The negative values of \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \), \( L_{\text{f}}^{\text{E}} \),\( \alpha_{p}^{\text{E}} \), and \( V_{\text{f}}^{\text{E}} \) and positive values for Z E, \( u_{{}}^{\text{E}} \),\( \mathop \pi \nolimits_{i}^{\text{E}} \), and \( \Delta_{\phi } n_{\text{D}} \) indicate the existence of strong interactions between the components. This was further supported by IR spectroscopy analysis.
Similar content being viewed by others
References
Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., Wasserscheid, P.: Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 23, 2494–2495 (2001)
Galiński, M., Lewandowski, A., Stępniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006)
Earle, M., Seddon, K., Adams, C.: Friedel-Crafts reactions in room temperature ionic liquids. Chem. Commun. 19, 2097–2098 (1998)
Fischer, T., Sethi, A., Welton, T., Woolf, J.: Diels–Alder reactions in room-temperature ionic liquids. Tetrahedron 55, 793–796 (1999)
Snedden, P., Cooper, A.I., Scott, K., Winterton, N.: Cross linked polymer–ionic liquid composite materials. Macromolecules 36, 4549–4556 (2003)
Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)
Werner, S., Haumann, M., Wasserscheid, P.: Ionic liquids in chemical engineering. Ann. Rev. Chem. Biomol. Eng. 1, 203–230 (2010)
Kerton, F.M., Marriott, R.: Alternative Solvents for Green Chemistry, 2nd edn. Royal Society of Chemistry, Cambridge (2013)
Gurkan, B.E., de la Fuente, J.C., Mindrup, E.M., Ficke, L.E., Goodrich, B.F., Price, E.A., Brennecke, J.F.: Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 132, 2116–2117 (2010)
Rebelo, L.P., Canongia Lopes, J.N., Esperança, J.M., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005)
Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)
Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium ethyl sulfate for electrolyte. J. Fluor. Chem. 120, 135–141 (2003)
Mihkel, K.O.E.L.: Physical and chemical properties of ionic liquids based on the dialkkylimidazo-lium cation. Estonian Proc. Acad. Sci. Chem. 49, 145–155 (2000)
Holbrey, J.D., Seddon, K.R.: The phase behaviour of 1-alkyl-3-methylimidazolium ethyl sulfates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. 13, 2133–2140 (1999)
Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)
Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)
Ngo, H.L., LeCompte, K., Hargens, L., McEwen, A.B.: Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357, 97–102 (2000)
Izák, P., Mateus, N.M., Afonso, C.A., Crespo, J.G.: Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation. Sep. Purif. Technol. 41, 141–145 (2005)
Alonso, L., Arce, A., Francisco, M., Soto, A.: Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Fluid Phase Equilib. 270, 97–102 (2008)
Alonso, L., Arce, A., Francisco, M., Soto, A.: Liquid–liquid equilibria of ([C2mim][EtSO4] + thiophene + 2,2,4-trimethylpentane) and ([C2mim][EtSO4] + thiophene + toluene): experimental data and correlation. J. Solution Chem. 37, 1355–1363 (2008)
Kokorin, A.: Ionic Liquids: Applications and Perspectives. InTech, Vienna (2011)
Mabaso, M.H., Redhi, G.G., Moodley, K.G.: Utilization of ionic liquids for the separation of organic liquids from industrial effluents. S. Afr. J. Chem. 65, 145–149 (2012)
Singh, T., Kumar, A.: Physical and excess properties of a room temperature ionic liquid (1-methyl-3-octylimidazolium ethyl sulfate) with n-alkoxyethanols (C 1 E m, m = 1 to 3) at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 40, 417–423 (2008)
Kumar, A., Singh, T., Gardas, R.L., Coutinho, J.A.: Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ether at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 40, 32–39 (2008)
Pal, A., Kumar, B.: Densities, speeds of sound and 1 H NMR spectroscopic studies for binary mixtures of 1-hexyl-3-methylimidazolium based ionic liquids with ethylene glycol monomethyl ether at temperature from T = (288.15–318.15) K. Fluid Phase Equil. 334, 157–165 (2012)
Pal, A., Kumar, B.: Volumetric, acoustic and spectroscopic studies for binary mixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) with alkoxyalkanols at T = (288.15 to 318.15) K. J. Mol. Liq. 163, 128–134 (2011)
Reddy, M.S., Nayeem, S.M., Raju, K.T.S.S., Babu, B.H.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-methoxyethanol from density, speed of sound, and refractive index measurements. J. Therm. Anal. Calorim. (2016). doi:10.1007/s10973-015-5205-9
González, E.J., González, B., Calvar, N., Domínguez, Á.: Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J. Chem. Eng. Data 52, 1641–1648 (2007)
García-Miaja, G., Troncoso, J., Romaní, L.: Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J. Chem. Thermodyn. 41, 161–166 (2009)
Lehmann, J., Rausch, M.H., Leipertz, A., Fröba, A.P.: Densities and excess molar volumes for binary mixtures of ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate with solvents. J. Chem. Eng. Data 55, 4068–4074 (2010)
Domańska, U., Laskowska, M.: Phase equilibria and volumetric properties of (1-ethyl-3-methylimidazolium ethylsulfate + alcohol or water) binary systems. J. Solution Chem. 37, 1271–1287 (2008)
Carneiro, A.P., Rodríguez, O., Held, C., Sadowski, G., A. Macedo, E.: Density of mixtures containing sugars and ionic liquids: experimental data and PC–SAFT modeling. J. Chem. Eng. Data 59, 2942–2954 (2014)
Ramalingam, A., Subramanian, R.R., Arunagiri, A.: Molecular interactions in binary mixtures of 1-ethyl-3-methylimidazolium ethylsulphate + aromatic sulfur species: Ab initio calculations and experiment. J. Innovat. Eng. 2(2), 6 (2014)
Scholz, E.: Karl Fischer Titrations. Springer, Berlin (1984)
Fernandez, A., Torrecilla, J.S., García, J., Rodríguez, F.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J. Chem. Eng. Data 52, 1979–1983 (2007)
Jacquemin, J., Husson, P., Padua, A.A., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)
García-Miaja, G., Troncoso, J., Romaní, L.: Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations. J. Chem. Thermodyn. 41, 334–341 (2009)
Ficke, L.E., Rodriguez, H., Brennecke, J.F.: Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J. Chem. Eng. Data 53, 2112–2119 (2008)
Ćwiklińska, A., Kinart, C.M.: Thermodynamic and physicochemical properties of binary mixtures of nitromethane with 2-methoxyethanol + 2-butoxyethanol systems at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 43, 420–429 (2011)
Kinart, C.M., Ćwiklińska, A., Kinart, Z., Bald, A., Kinart, W.J.: Studies on the intermolecular interactions in the binary mixtures of nitrobenzene with 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol at T = 298.15 K. Phys. Chem. Liq. 50, 679–696 (2012)
Aminabhavi, T.M., Raikar, S.K.: A study on mixing properties of binary mixtures of bromoform with aliphatic alcohols. J. Chem. Eng. Data 38, 310–319 (1993)
Piekarski, H., Piekarska, A., Kubalczyk, K.: Volumes, heat capacities, and compressibilities of the mixtures of acetonitrile and 2-methoxyethanol. J. Chem. Thermodyn. 43, 1375–1380 (2011)
Manfredini, M., Marchetti, A., Sighinolfi, S., Tassi, L., Ulrici, A.: Refractive properties of binary mixtures containing 1,2-dichloroethane + 2-methoxyethanol or 1,2-dimethoxyethane. J. Mol. Liq. 102, 53–81 (2003)
Svoboda, V., Zábranský, M., Barta, M.: Molar heat capacities of 2-methoxyethanol, 2-methoxyethanol, and 2-propoxyethanol in the temperature range from 298 K to 330 K. J. Chem. Thermodyn. 23, 711–712 (1991)
Benson, G.C., Kiyohara, O.: Thermodynamic properties of some cycloalkane–cycloalkanol systems at 298.15 K. 4. Excess volumes. J. Chem. Eng. Data 21, 362–365 (1976)
Douheret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2, 148–161 (2001)
Pandey, J.D., Shukla, S.K., Chhabra, J., Dey, R.: Excess thermodynamic parameters for the Pb–Sn alloy at various compositions. J. Indian Chem. Soc. 81, 962–964 (2004)
Westwater, W., Frantz, H.W., Hildebrand, J.H.: The internal pressure of pure and mixed liquids. Phys. Rev. 31, 135–144 (1928)
Bianchi, U., Agabio, G., Turturro, A.: Internal pressure of simple liquids. J. Phys. Chem. 69, 4392–4395 (1965)
Few, G.A., Rigby, M.: Thermal pressure coefficient and internal pressure of 2,2-dimethylpropane. J. Phys. Chem. 79, 1543–1546 (1975)
Macdonald, D.D., Hyne, J.B.: The thermal pressure and energy–volume coefficients of the methyl alcohol–water and t-butyl alcohol–water systems. Can. J. Chem. 49, 2636–2642 (1971)
Zorębski, E.: Internal pressure studies of alcohols on the basis of ultrasonic measurements. Mol. Quantum Acoust. 26, 317–326 (2005)
Douheret, G., Khadir, A., Pal, A.: Thermodynamic characterization of the water + methanol system, at 298.15 K. Thermochim. Acta 142, 219–243 (1989)
Dey, R., Singh, A.K., Pandey, J.D.: A new theoretical approach for estimating excess internal pressure. J. Mol. Liq. 124, 121–123 (2006)
Nayeem, Sk Md, Kondaiah, M., Sreekanth, K., Krishna Rao, D.: Comparative study of molecular interactions in aromatic, cyclic and aliphatic ketones with 1-octanol at 308.15 K: an insight from ultrasonic velocity and density. J. Mol. Liq. 207, 286–293 (2015)
Nayeem, S.M., Kondaiah, M., Sreekanth, K., Rao, D.K.: Acoustic and volumetric investigations in aromatic, cyclic and aliphatic ketones with dimethyl sulphoxide at 308.15 K. Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2015.08.005
Sunkara, G.R., Tadavarthi, M.M., Tadekoru, V.K., Tadikonda, S.K., Bezawada, S.R.: Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + n-vinyl-2-pyrrolidinone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Eng. Data 60, 886–894 (2015)
Nayeem, S.M., Kondaiah, M., Sreekanth, K., Rao, D.K.: Thermoacoustic, volumetric, and viscometric investigations in binary liquid system of cyclohexanone with benzyl benzoate at T = 308.15, 313.15, and 318.15 K. J. Thermodyn. (2014). doi:10.1155/2014/487403
Ali, A., Nabi, F., Tariq, M.: Volumetric, viscometric, ultrasonic, and refractive index properties of liquid mixtures of benzene with industrially important monomers at different temperatures. Int. J. Thermophys. 30, 464–474 (2009)
Vercher, E., Llopis, F.J., González-Alfaro, V., Miguel, P.J., Orchillés, V., Martínez-Andreu, A.: Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures. J. Chem. Thermodyn. 90, 174–184 (2015)
Rajagopal, K., Chenthilnath, S.: Study on excess thermodynamic parameters and theoretical estimation of ultrasonic velocity using scaled particle theory in binary liquid mixtures of 2-methyl-2-propanol and nitriles at different temperatures. Chin. J. Chem. Eng. 18, 804–816 (2010)
Ali, A., Tariq, M.: Thermal expansivity and isothermal compressibility of binary liquid mixtures from ultrasonic velocity: a comparison to Flory’s theory and hard sphere models. J. Pure. Appl. Ultrason. 28, 99–104 (2006)
Kermanpour, F., Niakan, H.Z.: Measurement and modeling the excess molar properties of binary mixtures of [C6mim][BF4] + 3-amino-1-propanol and {[C6 mim][BF4] + isobutanol}: application of Prigogine–Flory–Patterson theory. J. Chem. Thermodyn. 48, 129–139 (2012)
Hunt, P.A., Kirchner, B., Welton, T.: Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem. Eur. J. 12, 6762–6775 (2006)
Aggarwal, A., Lancaster, N.L., Sethi, A.R., Welton, T.: The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem. 4, 517–520 (2002)
Znamenskiy, V., Kobrak, M.N.: Molecular dynamics study of polarity in room-temperature ionic liquids. J. Phys. Chem. B 108, 1072–1079 (2004)
Dhumal, N.R., Kim, H.J., Kiefer, J.: Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair. J. Phys. Chem. A 115, 3551–3558 (2011)
Lassègues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids. J. Phys. Chem. A 113, 6419–6421 (2009)
Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: Reply to the “Comment on’New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids’”. J. Phys. Chem. A 114, 687–688 (2009)
Grondin, J., Lassègues, J.C., Cavagnat, D., Buffeteau, T., Johansson, P., Holomb, R.: Revisited vibrational assignments of imidazolium-based ionic liquids. J. Raman Spectrosc. 42, 733–743 (2011)
Chen, Y., Cao, Y., Sun, X., Mu, T.: Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. J. Mol. Liq. 190, 151–158 (2014)
He, H., Chen, H., Zheng, Y., Zhang, X., Yao, X., Yu, Z., Zhang, S.: The hydrogen-bonding interactions between 1-ethyl-3-methylimidazolium lactate ionic liquid and methanol. Aust. J. Chem. 66, 50–59 (2013)
Zheng, Y.Z., Wang, N.N., Luo, J.J., Zhou, Y., Yu, Z.W.: Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 15, 18055–18064 (2013)
Stejskal, J., Dybal, J., Trchová, M.: The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt. Synth. Met. 197, 168–174 (2014)
Noack, K., Leipertz, A., Kiefer, J.: Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. J. Mol. Struct. 1018, 45–53 (2012)
Umebayashi, Y., Jiang, J.C., Lin, K.H., Shan, Y.L., Fujii, K., Seki, S., Chang, H.C.: Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy. J. Chem. Phys. 131, 234502 (2009)
Shimomura, T., Fujii, K., Takamuku, T.: Effects of the alkyl-chain length on the mixing state of imidazolium-based ionic liquid–methanol solutions. Phys. Chem. Chem. Phys. 12, 12316–12324 (2010)
López-Pastor, M., Ayora-Cañada, M.J., Valcárcel, M., Lendl, B.: Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J. Phys. Chem. B 110, 10896–10902 (2006)
Kiefer, J., Molina, M.M., Noack, K.: The peculiar nature of molecular interactions between an imidazolium ionic liquid and acetone. ChemPhysChem 13, 1213–1220 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reddy, M.S., Raju, K.T.S.S., Nayeem, S.M. et al. Excess Thermodynamic Properties for Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate and 2-Methoxyethanol from T = (298.15 to 328.15) K at Atmospheric Pressure. J Solution Chem 45, 675–701 (2016). https://doi.org/10.1007/s10953-016-0465-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0465-y