Skip to main content
Log in

Excess Thermodynamic Properties for Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate and 2-Methoxyethanol from T = (298.15 to 328.15) K at Atmospheric Pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The density (ρ), speed of sound (u) and refractive index (n D) for pure [Emim][EtSO4], 2-methoxyethanol and their binary mixtures were measured using an Anton Paar vibrating tube density and sound velocity meter (DSA 5000 M) and automatic refractometer over the whole composition range as a function of temperature between 298.15 and 328.15 K in steps of 10 K at atmospheric pressure. Experimental values were used to calculate the excess values of molar volumes (\( V_{\text{m}}^{\text{E}} \)), partial molar volumes (\( \overline{V}_{\text{m}}^{\text{E}} \)), partial molar volumes at infinite dilution (\( \overline{V}_{\text{m}}^{{{\text{E,}}\infty }} \)), isentropic compressibility (\( \kappa_{S}^{\text{E}} \)), acoustic impedance (Z E), free length (\( L_{\text{f}}^{\text{E}} \)), speeds of sound (\( u_{{}}^{\text{E}} \)), internal pressure (\( \mathop \pi \nolimits_{i}^{\text{E}} \)), free volume (\( V_{\text{f}}^{\text{E}} \)) and deviations in refractive index ( \( \Delta_{\phi } n_{\text{D}} \)) for the binary mixtures. These properties were fitted to a Redlich–Kister type equation to obtain the binary coefficients and the standard deviations. The negative values of \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \), \( L_{\text{f}}^{\text{E}} \),\( \alpha_{p}^{\text{E}} \), and \( V_{\text{f}}^{\text{E}} \) and positive values for Z E, \( u_{{}}^{\text{E}} \),\( \mathop \pi \nolimits_{i}^{\text{E}} \), and \( \Delta_{\phi } n_{\text{D}} \) indicate the existence of strong interactions between the components. This was further supported by IR spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., Wasserscheid, P.: Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 23, 2494–2495 (2001)

    Article  Google Scholar 

  2. Galiński, M., Lewandowski, A., Stępniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006)

    Article  Google Scholar 

  3. Earle, M., Seddon, K., Adams, C.: Friedel-Crafts reactions in room temperature ionic liquids. Chem. Commun. 19, 2097–2098 (1998)

    Article  Google Scholar 

  4. Fischer, T., Sethi, A., Welton, T., Woolf, J.: Diels–Alder reactions in room-temperature ionic liquids. Tetrahedron 55, 793–796 (1999)

    Article  Google Scholar 

  5. Snedden, P., Cooper, A.I., Scott, K., Winterton, N.: Cross linked polymer–ionic liquid composite materials. Macromolecules 36, 4549–4556 (2003)

    Article  CAS  Google Scholar 

  6. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  CAS  Google Scholar 

  7. Werner, S., Haumann, M., Wasserscheid, P.: Ionic liquids in chemical engineering. Ann. Rev. Chem. Biomol. Eng. 1, 203–230 (2010)

    Article  CAS  Google Scholar 

  8. Kerton, F.M., Marriott, R.: Alternative Solvents for Green Chemistry, 2nd edn. Royal Society of Chemistry, Cambridge (2013)

    Google Scholar 

  9. Gurkan, B.E., de la Fuente, J.C., Mindrup, E.M., Ficke, L.E., Goodrich, B.F., Price, E.A., Brennecke, J.F.: Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 132, 2116–2117 (2010)

    Article  CAS  Google Scholar 

  10. Rebelo, L.P., Canongia Lopes, J.N., Esperança, J.M., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005)

    Article  CAS  Google Scholar 

  11. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)

    Article  CAS  Google Scholar 

  12. Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium ethyl sulfate for electrolyte. J. Fluor. Chem. 120, 135–141 (2003)

    Article  CAS  Google Scholar 

  13. Mihkel, K.O.E.L.: Physical and chemical properties of ionic liquids based on the dialkkylimidazo-lium cation. Estonian Proc. Acad. Sci. Chem. 49, 145–155 (2000)

    Google Scholar 

  14. Holbrey, J.D., Seddon, K.R.: The phase behaviour of 1-alkyl-3-methylimidazolium ethyl sulfates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. 13, 2133–2140 (1999)

    Article  Google Scholar 

  15. Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)

    Article  CAS  Google Scholar 

  16. Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)

    Article  CAS  Google Scholar 

  17. Ngo, H.L., LeCompte, K., Hargens, L., McEwen, A.B.: Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357, 97–102 (2000)

    Article  Google Scholar 

  18. Izák, P., Mateus, N.M., Afonso, C.A., Crespo, J.G.: Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation. Sep. Purif. Technol. 41, 141–145 (2005)

    Article  Google Scholar 

  19. Alonso, L., Arce, A., Francisco, M., Soto, A.: Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Fluid Phase Equilib. 270, 97–102 (2008)

    Article  CAS  Google Scholar 

  20. Alonso, L., Arce, A., Francisco, M., Soto, A.: Liquid–liquid equilibria of ([C2mim][EtSO4] + thiophene + 2,2,4-trimethylpentane) and ([C2mim][EtSO4] + thiophene + toluene): experimental data and correlation. J. Solution Chem. 37, 1355–1363 (2008)

    Article  CAS  Google Scholar 

  21. Kokorin, A.: Ionic Liquids: Applications and Perspectives. InTech, Vienna (2011)

    Book  Google Scholar 

  22. Mabaso, M.H., Redhi, G.G., Moodley, K.G.: Utilization of ionic liquids for the separation of organic liquids from industrial effluents. S. Afr. J. Chem. 65, 145–149 (2012)

    CAS  Google Scholar 

  23. Singh, T., Kumar, A.: Physical and excess properties of a room temperature ionic liquid (1-methyl-3-octylimidazolium ethyl sulfate) with n-alkoxyethanols (C 1 E m, m = 1 to 3) at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 40, 417–423 (2008)

    Article  CAS  Google Scholar 

  24. Kumar, A., Singh, T., Gardas, R.L., Coutinho, J.A.: Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ether at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 40, 32–39 (2008)

    Article  CAS  Google Scholar 

  25. Pal, A., Kumar, B.: Densities, speeds of sound and 1 H NMR spectroscopic studies for binary mixtures of 1-hexyl-3-methylimidazolium based ionic liquids with ethylene glycol monomethyl ether at temperature from T = (288.15–318.15) K. Fluid Phase Equil. 334, 157–165 (2012)

    Article  CAS  Google Scholar 

  26. Pal, A., Kumar, B.: Volumetric, acoustic and spectroscopic studies for binary mixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) with alkoxyalkanols at T = (288.15 to 318.15) K. J. Mol. Liq. 163, 128–134 (2011)

    Article  CAS  Google Scholar 

  27. Reddy, M.S., Nayeem, S.M., Raju, K.T.S.S., Babu, B.H.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-methoxyethanol from density, speed of sound, and refractive index measurements. J. Therm. Anal. Calorim. (2016). doi:10.1007/s10973-015-5205-9

    Google Scholar 

  28. González, E.J., González, B., Calvar, N., Domínguez, Á.: Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J. Chem. Eng. Data 52, 1641–1648 (2007)

    Article  Google Scholar 

  29. García-Miaja, G., Troncoso, J., Romaní, L.: Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J. Chem. Thermodyn. 41, 161–166 (2009)

    Article  Google Scholar 

  30. Lehmann, J., Rausch, M.H., Leipertz, A., Fröba, A.P.: Densities and excess molar volumes for binary mixtures of ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate with solvents. J. Chem. Eng. Data 55, 4068–4074 (2010)

    Article  CAS  Google Scholar 

  31. Domańska, U., Laskowska, M.: Phase equilibria and volumetric properties of (1-ethyl-3-methylimidazolium ethylsulfate + alcohol or water) binary systems. J. Solution Chem. 37, 1271–1287 (2008)

    Article  Google Scholar 

  32. Carneiro, A.P., Rodríguez, O., Held, C., Sadowski, G., A. Macedo, E.: Density of mixtures containing sugars and ionic liquids: experimental data and PC–SAFT modeling. J. Chem. Eng. Data 59, 2942–2954 (2014)

    Article  CAS  Google Scholar 

  33. Ramalingam, A., Subramanian, R.R., Arunagiri, A.: Molecular interactions in binary mixtures of 1-ethyl-3-methylimidazolium ethylsulphate + aromatic sulfur species: Ab initio calculations and experiment. J. Innovat. Eng. 2(2), 6 (2014)

    Google Scholar 

  34. Scholz, E.: Karl Fischer Titrations. Springer, Berlin (1984)

    Google Scholar 

  35. Fernandez, A., Torrecilla, J.S., García, J., Rodríguez, F.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J. Chem. Eng. Data 52, 1979–1983 (2007)

    Article  CAS  Google Scholar 

  36. Jacquemin, J., Husson, P., Padua, A.A., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  37. García-Miaja, G., Troncoso, J., Romaní, L.: Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations. J. Chem. Thermodyn. 41, 334–341 (2009)

    Article  Google Scholar 

  38. Ficke, L.E., Rodriguez, H., Brennecke, J.F.: Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J. Chem. Eng. Data 53, 2112–2119 (2008)

    Article  CAS  Google Scholar 

  39. Ćwiklińska, A., Kinart, C.M.: Thermodynamic and physicochemical properties of binary mixtures of nitromethane with 2-methoxyethanol + 2-butoxyethanol systems at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 43, 420–429 (2011)

    Article  Google Scholar 

  40. Kinart, C.M., Ćwiklińska, A., Kinart, Z., Bald, A., Kinart, W.J.: Studies on the intermolecular interactions in the binary mixtures of nitrobenzene with 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol at T = 298.15 K. Phys. Chem. Liq. 50, 679–696 (2012)

    Article  CAS  Google Scholar 

  41. Aminabhavi, T.M., Raikar, S.K.: A study on mixing properties of binary mixtures of bromoform with aliphatic alcohols. J. Chem. Eng. Data 38, 310–319 (1993)

    Article  CAS  Google Scholar 

  42. Piekarski, H., Piekarska, A., Kubalczyk, K.: Volumes, heat capacities, and compressibilities of the mixtures of acetonitrile and 2-methoxyethanol. J. Chem. Thermodyn. 43, 1375–1380 (2011)

    Article  CAS  Google Scholar 

  43. Manfredini, M., Marchetti, A., Sighinolfi, S., Tassi, L., Ulrici, A.: Refractive properties of binary mixtures containing 1,2-dichloroethane + 2-methoxyethanol or 1,2-dimethoxyethane. J. Mol. Liq. 102, 53–81 (2003)

    Article  CAS  Google Scholar 

  44. Svoboda, V., Zábranský, M., Barta, M.: Molar heat capacities of 2-methoxyethanol, 2-methoxyethanol, and 2-propoxyethanol in the temperature range from 298 K to 330 K. J. Chem. Thermodyn. 23, 711–712 (1991)

    Article  CAS  Google Scholar 

  45. Benson, G.C., Kiyohara, O.: Thermodynamic properties of some cycloalkane–cycloalkanol systems at 298.15 K. 4. Excess volumes. J. Chem. Eng. Data 21, 362–365 (1976)

    Article  CAS  Google Scholar 

  46. Douheret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2, 148–161 (2001)

    Article  CAS  Google Scholar 

  47. Pandey, J.D., Shukla, S.K., Chhabra, J., Dey, R.: Excess thermodynamic parameters for the Pb–Sn alloy at various compositions. J. Indian Chem. Soc. 81, 962–964 (2004)

    CAS  Google Scholar 

  48. Westwater, W., Frantz, H.W., Hildebrand, J.H.: The internal pressure of pure and mixed liquids. Phys. Rev. 31, 135–144 (1928)

    Article  CAS  Google Scholar 

  49. Bianchi, U., Agabio, G., Turturro, A.: Internal pressure of simple liquids. J. Phys. Chem. 69, 4392–4395 (1965)

    Article  CAS  Google Scholar 

  50. Few, G.A., Rigby, M.: Thermal pressure coefficient and internal pressure of 2,2-dimethylpropane. J. Phys. Chem. 79, 1543–1546 (1975)

    Article  CAS  Google Scholar 

  51. Macdonald, D.D., Hyne, J.B.: The thermal pressure and energy–volume coefficients of the methyl alcohol–water and t-butyl alcohol–water systems. Can. J. Chem. 49, 2636–2642 (1971)

    Article  CAS  Google Scholar 

  52. Zorębski, E.: Internal pressure studies of alcohols on the basis of ultrasonic measurements. Mol. Quantum Acoust. 26, 317–326 (2005)

    Google Scholar 

  53. Douheret, G., Khadir, A., Pal, A.: Thermodynamic characterization of the water + methanol system, at 298.15 K. Thermochim. Acta 142, 219–243 (1989)

    Article  CAS  Google Scholar 

  54. Dey, R., Singh, A.K., Pandey, J.D.: A new theoretical approach for estimating excess internal pressure. J. Mol. Liq. 124, 121–123 (2006)

    Article  CAS  Google Scholar 

  55. Nayeem, Sk Md, Kondaiah, M., Sreekanth, K., Krishna Rao, D.: Comparative study of molecular interactions in aromatic, cyclic and aliphatic ketones with 1-octanol at 308.15 K: an insight from ultrasonic velocity and density. J. Mol. Liq. 207, 286–293 (2015)

    Article  CAS  Google Scholar 

  56. Nayeem, S.M., Kondaiah, M., Sreekanth, K., Rao, D.K.: Acoustic and volumetric investigations in aromatic, cyclic and aliphatic ketones with dimethyl sulphoxide at 308.15 K. Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2015.08.005

    Google Scholar 

  57. Sunkara, G.R., Tadavarthi, M.M., Tadekoru, V.K., Tadikonda, S.K., Bezawada, S.R.: Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + n-vinyl-2-pyrrolidinone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Eng. Data 60, 886–894 (2015)

    Article  CAS  Google Scholar 

  58. Nayeem, S.M., Kondaiah, M., Sreekanth, K., Rao, D.K.: Thermoacoustic, volumetric, and viscometric investigations in binary liquid system of cyclohexanone with benzyl benzoate at T = 308.15, 313.15, and 318.15 K. J. Thermodyn. (2014). doi:10.1155/2014/487403

    Google Scholar 

  59. Ali, A., Nabi, F., Tariq, M.: Volumetric, viscometric, ultrasonic, and refractive index properties of liquid mixtures of benzene with industrially important monomers at different temperatures. Int. J. Thermophys. 30, 464–474 (2009)

    Article  CAS  Google Scholar 

  60. Vercher, E., Llopis, F.J., González-Alfaro, V., Miguel, P.J., Orchillés, V., Martínez-Andreu, A.: Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures. J. Chem. Thermodyn. 90, 174–184 (2015)

    Article  CAS  Google Scholar 

  61. Rajagopal, K., Chenthilnath, S.: Study on excess thermodynamic parameters and theoretical estimation of ultrasonic velocity using scaled particle theory in binary liquid mixtures of 2-methyl-2-propanol and nitriles at different temperatures. Chin. J. Chem. Eng. 18, 804–816 (2010)

    Article  CAS  Google Scholar 

  62. Ali, A., Tariq, M.: Thermal expansivity and isothermal compressibility of binary liquid mixtures from ultrasonic velocity: a comparison to Flory’s theory and hard sphere models. J. Pure. Appl. Ultrason. 28, 99–104 (2006)

    CAS  Google Scholar 

  63. Kermanpour, F., Niakan, H.Z.: Measurement and modeling the excess molar properties of binary mixtures of [C6mim][BF4] + 3-amino-1-propanol and {[C6 mim][BF4] + isobutanol}: application of Prigogine–Flory–Patterson theory. J. Chem. Thermodyn. 48, 129–139 (2012)

    Article  CAS  Google Scholar 

  64. Hunt, P.A., Kirchner, B., Welton, T.: Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem. Eur. J. 12, 6762–6775 (2006)

    Article  CAS  Google Scholar 

  65. Aggarwal, A., Lancaster, N.L., Sethi, A.R., Welton, T.: The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem. 4, 517–520 (2002)

    Article  CAS  Google Scholar 

  66. Znamenskiy, V., Kobrak, M.N.: Molecular dynamics study of polarity in room-temperature ionic liquids. J. Phys. Chem. B 108, 1072–1079 (2004)

    Article  CAS  Google Scholar 

  67. Dhumal, N.R., Kim, H.J., Kiefer, J.: Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair. J. Phys. Chem. A 115, 3551–3558 (2011)

    Article  CAS  Google Scholar 

  68. Lassègues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids. J. Phys. Chem. A 113, 6419–6421 (2009)

    Article  Google Scholar 

  69. Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: Reply to the “Comment on’New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids’”. J. Phys. Chem. A 114, 687–688 (2009)

    Article  Google Scholar 

  70. Grondin, J., Lassègues, J.C., Cavagnat, D., Buffeteau, T., Johansson, P., Holomb, R.: Revisited vibrational assignments of imidazolium-based ionic liquids. J. Raman Spectrosc. 42, 733–743 (2011)

    Article  CAS  Google Scholar 

  71. Chen, Y., Cao, Y., Sun, X., Mu, T.: Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. J. Mol. Liq. 190, 151–158 (2014)

    Article  CAS  Google Scholar 

  72. He, H., Chen, H., Zheng, Y., Zhang, X., Yao, X., Yu, Z., Zhang, S.: The hydrogen-bonding interactions between 1-ethyl-3-methylimidazolium lactate ionic liquid and methanol. Aust. J. Chem. 66, 50–59 (2013)

    Article  CAS  Google Scholar 

  73. Zheng, Y.Z., Wang, N.N., Luo, J.J., Zhou, Y., Yu, Z.W.: Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 15, 18055–18064 (2013)

    Article  CAS  Google Scholar 

  74. Stejskal, J., Dybal, J., Trchová, M.: The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt. Synth. Met. 197, 168–174 (2014)

    Article  CAS  Google Scholar 

  75. Noack, K., Leipertz, A., Kiefer, J.: Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. J. Mol. Struct. 1018, 45–53 (2012)

    Article  CAS  Google Scholar 

  76. Umebayashi, Y., Jiang, J.C., Lin, K.H., Shan, Y.L., Fujii, K., Seki, S., Chang, H.C.: Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy. J. Chem. Phys. 131, 234502 (2009)

    Article  Google Scholar 

  77. Shimomura, T., Fujii, K., Takamuku, T.: Effects of the alkyl-chain length on the mixing state of imidazolium-based ionic liquid–methanol solutions. Phys. Chem. Chem. Phys. 12, 12316–12324 (2010)

    Article  CAS  Google Scholar 

  78. López-Pastor, M., Ayora-Cañada, M.J., Valcárcel, M., Lendl, B.: Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J. Phys. Chem. B 110, 10896–10902 (2006)

    Article  Google Scholar 

  79. Kiefer, J., Molina, M.M., Noack, K.: The peculiar nature of molecular interactions between an imidazolium ionic liquid and acetone. ChemPhysChem 13, 1213–1220 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hari Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.S., Raju, K.T.S.S., Nayeem, S.M. et al. Excess Thermodynamic Properties for Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate and 2-Methoxyethanol from T = (298.15 to 328.15) K at Atmospheric Pressure. J Solution Chem 45, 675–701 (2016). https://doi.org/10.1007/s10953-016-0465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0465-y

Keywords

Navigation