Skip to main content
Log in

Potentiometric, Thermodynamics and Coordination Properties for Binary and Mixed Ligand Complexes of Copper(II) with Imidazole-4-acetic Acid and Tryptophan or Phenylalanine Aromatic Amino Acids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Binary and ternary complex formation equilibria of copper(II) with imidazole-4-acetic acid (IMA) and some aromatic amino acids such as tryptophan and phenylalanine have been studied from 15 to 45 °C by potentiometric titration. The pH-titrations of the reaction mixtures have shown 1:1:1 (Cu:IMA:amino acid) ternary complex formation. The stability of mixed-ligand complexes was quantitatively compared with the stability of the binary complexes as Δlog10 K, Δlog10 β and log10 X parameters. The speciation of different species in solution has been evaluated as a function of pH. The effect of temperature on protonation of the ligands and formation of mixed ligand complexes was investigated. Thermodynamic parameters were calculated and are discussed. The effect of solvent of the protonation of IMA and Cu–IMA complex formation was also investigated and discussed. Additionally, the stoichiometric protonation constants (log10 β) of imidazole-4-acetic acid and its binary Cu(II)–IMA complexes were determined potentiometrically over a wide range of solvent composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IMA:

Imidazole-4-acetic acid

Phe:

Phenylalanine amino acid

Trp:

Tryptophan amino acid

References

  1. Sigel, A., Sigel, H., Sigel, R.K.O. (eds.): Metal Ions in Life Sciences, vol. 1. Wiley, Chichester (2006)

    Google Scholar 

  2. May, P.M., Williams, D.R.: In: Sigel, H. (ed.) Metal Ions in Biological Systems Properties of Copper, vol. 12. Marcel Dekker, New York (1981)

    Google Scholar 

  3. Sigel, H. (ed.): Metal Ions in Biological Systems, vol. 13. Marcel Dekker, New York (1981)

    Google Scholar 

  4. Miura, T., Hori-J, A., Mototani, H., Takeuchi, H.: Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry 38, 11560–11569 (1999)

    Article  CAS  Google Scholar 

  5. Solomon, E.I., Szilagyi, R.K., George, S.D., Basumallick, L.: Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins. Chem. Rev. 104, 419–458 (2009)

    Article  Google Scholar 

  6. Solomon, E.I., Sundaram, U.M., Machonkin, T.E.: Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996)

    Article  CAS  Google Scholar 

  7. Fujimori, T., Yamada, S., Yasui, H., Sakurai, H., In, Y., Ishida, T.: Orally active antioxidative copper(II) aspirinate: synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations. J. Biol. Inorg. Chem. 10, 831–841 (2005)

    Article  CAS  Google Scholar 

  8. Lobana, T.S., Rekha, R., Butcher, R.J., Castineiras, A., Bermejo, E., Bharatam, P.V.: Novel oxygen chirality induced by asymmetric coordination of an ether oxygen atom to a metal center in a series of sugar-pendant dipicolylamine copper(II) complexes. Inorg. Chem. 45, 1535–1551 (2006)

    Article  CAS  Google Scholar 

  9. Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Sassi, M., Tarasconi, P., Dornia, M., Capacchi, S., Albertini, R., Pinelli, S.: Synthesis, characterization and X-ray structures of new antiproliferative and proapoptotic natural aldehyde thiosemicarbazones and their nickel(II) and copper(II) complexes. J. Inorg. Biochem. 90, 113–126 (2002)

    Article  CAS  Google Scholar 

  10. Remko, M., Fitz, D., Broer, R., Rode, B.M.: Effect of metal ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of l-phenylalanine, l-tyrosine, l-tryptophan and their zwitter ionic forms. J. Mol. Model. 17, 3117–3128 (2011)

    Article  CAS  Google Scholar 

  11. Bell, C., Abrams, J., Nutt, D.: Tryptophan depletion and its implications for psychiatry. Br. J. Psychiatry 178, 399–405 (2001)

    Article  CAS  Google Scholar 

  12. Markus, C.R., Olivier, B., De Haan, E.H.F.: Whey protein rich in α-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am. J. Clin. Nutr. 75, 1051–1056 (2002)

    CAS  Google Scholar 

  13. Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements; The Inorganic Chemistry of the Life. Clarendon Press, Oxford (1991)

    Google Scholar 

  14. Bertini, I., Gray, H.B., Lippard, S.J., Valentine, J.S.: Bioinorganic Chemistry. University Science Books, Mill Valley (1994)

    Google Scholar 

  15. Gilman, A.G., Goodman, L.S.: Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 10th edn. Mc-Graw Hill, New Jersey (2002)

    Google Scholar 

  16. Kimura, E., Kurogi, Y., Shionoya, M., Shira, M.: Synthesis, properties, and complexation of a new imidazole-pendant macrocyclic 12-membered triamine ligand. Inorg. Chem. 30, 4524–4529 (1991)

    Article  CAS  Google Scholar 

  17. Schayer, R.W.: The metabolism of ring labeled histamine. J. Biol. Chem. 196, 469–475 (1952)

    CAS  Google Scholar 

  18. Baldridge, R.C., Tourtellotte, C.D.: The metabolism of histidine. III. Urinary metabolites. J. Biol. Chem. 233, 125–127 (1958)

    CAS  Google Scholar 

  19. Khandelwal, J.K., Prell, G.D., Morrishow, A.M., Green, J.P.: Presence and measurement of imidazoleacetic acid, a γ-aminobutyric acid agonist, in rat brain and human cerebrospinal fluid. J. Neurochem. 52, 1107–1113 (1989)

    Article  CAS  Google Scholar 

  20. García-Raso, A., Fiol, J.J., Adrover, B., Tauler, P., Pons, A., Mata, I., Espinosa, E., Molins, E.: Reactivity of copper(II) peptide complexes with bioligands (benzimidazole and creatinine). Polyhedron 22, 3255–3264 (2003)

    Article  Google Scholar 

  21. El-Sherif, A.A.: Shoukry: M.M.: Copper(II) complexes of imino-bis(methyl phosphonic acid) with some bio-revelant ligands. Equilibrium studies and hydrolysis of glycine methyl ester through complex formation. J. Coord. Chem. 58, 1401–1415 (2005)

    Article  CAS  Google Scholar 

  22. El-Sherif, A.A.: Coordination chemistry of palladium(II) ternary complexes with relevant biomolecules. In: Stoichiometry and Research (ed.) The Importance of Quantity in Biomedicine, pp. 79–120. In-Tech Publisher, Rijeka (2012)

    Google Scholar 

  23. El-Sherif, A.A.: Mixed ligand complex formation reactions and equilibrium studies of Cu(II) with bidentate heterocyclic alcohol (N, O) and some bio-relevant ligands. J. Solution Chem. 41, 813–824 (2010)

    Article  Google Scholar 

  24. El-Sherif, A.A.: Coordination properties of bidentate (N, O) and tridentate (N, O, O) heterocyclic alcohols with dimethyltin(IV) ion. J. Coord. Chem. 64, 1240–1253 (2011)

    Article  CAS  Google Scholar 

  25. El-Sherif, A.A., Shoukry, M.M., Hosny, W.M., Abd Al-Moghny, M.G.: Complex formation equilibria of unusual seven-coordinate Fe(EDTA) complexes with DNA constituents and related bio-relevant ligands. J. Solution Chem. 41, 813–827 (2012)

    Article  CAS  Google Scholar 

  26. El-Sherif, A.A.: Mixed-ligand complexes of 2-(aminomethyl)benzimidazole palladium(II) with various biologically relevant ligands. J. Solution Chem. 35, 1287–1301 (2006)

    Article  Google Scholar 

  27. Jeffery, G.H., Bassett, J., Mendham, J., Deney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, 5th edn. Longman, London (1989)

    Google Scholar 

  28. Schwarzenbach, G., Flaschka, H.A.: Complexometric Titrations. Barnes and Noble-Methuen, New York (1957)

    Google Scholar 

  29. Gran, G.: Determination of the equivalence point in potentiometric titration. Part II. Analyst 77, 661–671 (1952)

    Article  CAS  Google Scholar 

  30. Aljahdali, M.S., El-Sherif, A.A., Hilal, R.H., Abdelkarim, A.T.: Mixed bivalent transition metal complexes of 1,10-phenanthroline and 2-aminomethylthiophenyl-4-bromosalicylaldehyde Schiff base: Spectroscopic, molecular modeling and biological activities. Eur. J. Chem. 4, 370–378 (2013)

    Article  CAS  Google Scholar 

  31. Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camoes, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: Measurement of pH. Definition, standards, and procedures. Pure Appl. Chem. 74, 2169–2200 (2002)

    Article  CAS  Google Scholar 

  32. Gündüz, T., Kılıç, E., Köpseoğlu, F., Canel, E.: Protonation constants of some substituted salicylideneanilines in dioxan–water mixtures. Anal. Chim. Acta 282, 489–495 (1993)

    Article  Google Scholar 

  33. Van Uitert, G.L., Hass, C.G.: Studies on the coordination compounds. A method for determining thermodynamic equilibrium constants in mixed solvents. J. Am. Chem. Soc. 75, 451–455 (1971)

    Article  Google Scholar 

  34. Aljahdali, M., Foti, C., El-Sherif, A.A., Mohamed, M.M.A., Soliman, A.A.: Al Ruqi, O.S.: Potentiometric determination of stability constants and thermodynamic data for dimethyltin(IV) dichloride complexes with iminobis(methylphosphonic acid) in water and dioxane–water mixtures. Monatsh. Chem. 144, 1467–1480 (2013)

    Article  CAS  Google Scholar 

  35. Kılıç, E., Aslan, N.: Determination of autoprotolysis constants of water–organic solvent mixtures by potentiometry. Microchim. Acta 151, 89–92 (2005)

    Article  Google Scholar 

  36. Woolley, E.M., Hurkot, D.G., Hepler, L.G.: Ionization constants for water in aqueous organic mixtures. J. Phys. Chem. 74, 3908–3913 (1970)

    Article  Google Scholar 

  37. Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)

    Article  CAS  Google Scholar 

  38. Pettit, L.: University of Leeds, Personal Communication

  39. HyperChem version 7.5 Hypercube, Inc. (2003)

  40. Soliman, A.A., El-Sherif, A.A., Amin, M.A.: Thermodynamics, chemical speciation and complex formation equilibria studies of binary and mixed ligand complexes of Cu(II) with 2,2’-bipyridyl and some aromatic diamines. J. Solution Chem. 44, 77–99 (2015)

    Article  CAS  Google Scholar 

  41. Rayan, A.M., Ahmed, M.M., Barakat, M.H., Abdelkarimd, A.T., El-Sherif, A.A.: Complex formation of cetirizine drug with bivalent transition metal(II) ions in the presence of alanine: synthesis, characterization, equilibrium studies, and biological activity studies. J. Coord. Chem. 68, 678–703 (2015)

    Article  CAS  Google Scholar 

  42. Smith, R.M., Martell, A.E.: NIST Standard Reference Database. NIST Critically Selected Stability Constants of Metal Complexes Database. Version 3.0. Data collected and selected by U.S. Department of Commerce, National Institute of Standards and Technology (1997)

  43. Tȍrȍk, I., Surdy, P., Rockenbauer, A., Korecz Jr, L., Anthony, G., Koolhaas, A., Gajda, T.: Nickel(II)-, copper(II)- and zinc(II)-complexes of some substituted imidazole ligands. J. Inorg. Biochem. 71, 7–14 (1998)

    Article  Google Scholar 

  44. Aljahdali, M., El-Sherif, A.A., Shoukry, M.M., Mohamed, S.E.: Potentiometric and thermodynamic studies of binary and ternary transition metal(II) complexes of imidazole-4-acetic acid and some bio-relevant ligands. J. Solution Chem. 42, 1028–1050 (2013)

    Article  CAS  Google Scholar 

  45. El-Sherif, A.A.: Potentiometric determination of the stability constants of trimethyltin(iv) chloride complexes with imino-bis(methylphosphonic acid) in water and dioxane–water mixtures. J. Solution Chem. 41, 392–409 (2012)

    Article  CAS  Google Scholar 

  46. Mahrouka, M.M., Abdelkarim, A.T., El-Sherif, A.A., Shoukry, M.M.: Potentiometric and thermodynamic studies for binary and mixed ligand complexes of some transition metal ions with hydrazone and phenylalanine. Int. J. Electrochem. Sci. 10, 456–471 (2015)

    Google Scholar 

  47. Phillips, C.S.G., Williams, R.J.P.: Inorganic Chemistry, vol. 2, p. 268. Oxford (1966)

  48. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. Wiley, London (1962)

    Google Scholar 

  49. Sigel, H.: Coordination Chemistry, vol. 20. Pergamon Press, Oxford (1980)

    Google Scholar 

  50. Walker, F.A., Sigel, H., McCormick, D.B.: Spectral properties of mixed-ligand copper(II) complexes and their corresponding binary parent complexes. Inorg. Chem. 11, 2756–2763 (1972)

    Article  CAS  Google Scholar 

  51. Aljahdali, M.S., El-Sherif, A.A.: Equilibrium studies of binary and mixed-ligand complexes of zinc(II) involving 2-(aminomethyl)-benzimidazole and some bio-relevant ligands. J. Solution Chem. 41, 1759–1776 (2012)

    Article  CAS  Google Scholar 

  52. Maggiore, R., Musumeci, S., Rizzarelli, E., Sammartano, S.: Complexes of Cu2+ with 2,2-dipyridyl and cyclohexane-1,1-dicarboxylic acid. Inorg. Chim. Acta 18, 155–158 (1976)

    Article  CAS  Google Scholar 

  53. Mahmoud, M.M.A., El-Sherif, A.A.: Complex formation equilibria between zinc(II), nitrilo-tris(methylphosphonic aid) and some bio-relevant ligands. The kinetics and mechanism for zinc(ii) ion promoted hydrolysis of glycine methyl ester. J. Solution Chem. 39, 639–653 (2010)

    Article  Google Scholar 

  54. Kramer-Schnabel, U., Linder, P.W.: Substituent effects in the protonation and complexation with copper(II) ions of organic monophosphate esters. A potentiometric and calorimetric study. Inorg. Chem. 30, 1248–1254 (1991)

    Article  CAS  Google Scholar 

  55. Rees, D.C.: Experimental evaluation of the effective dielectric constant of proteins. J. Mol. Biol. 141, 323–326 (1980)

    Article  CAS  Google Scholar 

  56. Rogersa, N.K., Mooreb, G.R., Sternberga, M.J.E.: Electrostatic interactions in globular proteins: calculation of the pH dependence of the redox potential of cytochrome C551. J. Mol. Biol. 182, 613–616 (1985)

    Article  Google Scholar 

  57. Åkerlöf, G., Short, O.A.: The dielectric constant of dioxane–water mixtures between 0° and 80°–correction. J. Am. Chem. Soc. 75, 6357–6362 (1953)

    Article  Google Scholar 

  58. Jameson, R.F., Wilson, M.F.: Thermodynamics of the interactions of catechol with transition metals. Part I. Free energy, enthalpy, and entropy changes for the ionisation of catechol at 25°C. Comparison of the temperature-coefficient method with direct calorimetry. J. Chem. Soc., Dalton Trans. 23, 2507–2610 (1972)

    Google Scholar 

  59. Mohamed, M.M.A., Shehata, M.R., Shoukry, M.M.: Trimethyltin(IV) complexes with some selected DNA constituents. J. Coord. Chem. 53, 125–142 (2001)

    Article  CAS  Google Scholar 

  60. El-Sherif, A.A.: Mixed ligand complex formation reactions and equilibrium studies of Cu(II) with bidentate heterocyclic alcohol (N, O) and some bio-relevant ligands. J. Solution Chem. 39, 131–150 (2010)

    Article  CAS  Google Scholar 

  61. El-Sherif, A.A., Shoukry, M.M., Abd-Elgawad, M.M.A.: Protonation equilibria of some selected α-amino acids in DMSO–water mixture and their Cu(II)-complexes. J. Solution Chem. 42, 412–427 (2013)

    Article  CAS  Google Scholar 

  62. Doğan, A., Köseoğlu, F., Kılıc, E.: The stability constants of copper(II) complexes with some α-amino acids in dioxane–water mixtures. Anal. Biochem. 295, 237–239 (2001)

    Article  Google Scholar 

  63. Pearson, R.G.: Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54, 1423–1430 (1989)

    Article  CAS  Google Scholar 

  64. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)

    Article  CAS  Google Scholar 

  65. Parr, R.G.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  66. Chattaraj, P.K., Giri, S.: Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A 111, 11116–11121 (2007)

    Article  CAS  Google Scholar 

  67. Speie, G., Csihony, J., Whalen, A.M., Pie-Pont, C.G.: Studies on aerobic reactions of ammonia/3,5-di-tert-butylcatechol Schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)–radical ferromagnetic exchange and observations on a unique N–N coupling reaction. Inorg. Chem. 35, 3519–3535 (1996)

    Article  Google Scholar 

  68. Aihara, J.: Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999)

    Article  CAS  Google Scholar 

  69. Haddon, R.C., Fukunaga, T.: Absolute hardness as a measure of aromaticity. Tetrahedron Lett. 29, 4843–4846 (1988)

    Article  Google Scholar 

  70. Parr, R.G., Chattara, P.K.: Principle of maximum hardness. J. Am. Chem. Soc. 113, 1854–1855 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer T. Abdelkarim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkarim, A.T., El-Sherif, A.A. Potentiometric, Thermodynamics and Coordination Properties for Binary and Mixed Ligand Complexes of Copper(II) with Imidazole-4-acetic Acid and Tryptophan or Phenylalanine Aromatic Amino Acids. J Solution Chem 45, 712–731 (2016). https://doi.org/10.1007/s10953-016-0464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0464-z

Keywords

Navigation