Skip to main content
Log in

Effect of 1-Butyl-3-methylimidazolium Ibuprofenate as an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) on the Thermodynamic Properties of Glycine and l-Alanine in Aqueous Solutions at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Recently, ionic liquids have been combined with active pharmaceutical ingredients (APIs), and a third generation of ILs has emerged (API-ILs). The effect of a novel ionic liquid containing the ibuprofenate anion as an active pharmaceutical ingredient ionic liquid (API-IL) on the thermodynamic properties of two amino acids, glycine and l-alanine, have been studied. The densities, speeds of sound, viscosities and refractive indices of glycine and l-alanine in water and in aqueous solutions of an API-IL, 1-butyl-3-methylimidazolium ibuprofenate ([BMIM][Ibu]), have been determined at temperatures 288.15–318.15 K. The measured data have been used to calculate the standard partial molar volume \( V_{\phi }^{0} \), partial molar volume of transfer \( \Delta_{\text{tr}} V_{\phi }^{0} \), Hepler’s constant \( (\partial^{2} V_{\phi }^{0} /\partial T^{2} )_{p} \), apparent molar isentropic compressibility \( \kappa_{\phi } \), molar refraction R D, viscosity B coefficient (B) and hydration number parameters n H. All of these parameters are discussed in terms of the competitive interactions occurring between amino acids–[BMIM][Ibu] and amino acids–water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geppi, M., Guccione, S., Mollica, G.: Molecular properties of ibuprofen and its solid dispersions with eudragit RL100 studied by solid-state nuclear magnetic resonance. Pharmaceut. Res. 22, 1544–1555 (2005)

    Article  CAS  Google Scholar 

  2. Moniruzzama, M., Goto, M.: Application of ionic liquids: future solvents and reagents for pharmaceuticals. J. Chem. Eng. Jpn. 44, 370–381 (2013)

    Article  Google Scholar 

  3. Bittner, B., Mountfieldm, R.J.: Formulations and relative activities for the oral administration of poorly water soluble in early drug delivery discovery animal studies. Pharm. Ind. 64, 800–807 (2002)

    CAS  Google Scholar 

  4. Bitter, B., Mountfield, R.: Intravenous administration of poorly soluble new drug entities in early drug discovery: the potential impact of formulation on pharmacokinetic parameters. J. Curr. Opinion Drug Discov. Develop. 5, 59–71 (2002)

    Google Scholar 

  5. Shamshina, J.L., Barber, P.S., Rogers, R.D.: Ionic liquids in drug delivery. Expert Opinion Drug Deliv. 10, 1367–1381 (2013)

    Article  CAS  Google Scholar 

  6. Hough, W.L., Smiglak, M., Rodriguez, H., Swatloski, R.P., Spear, S.K., Daly, D.T., Pernak, J., Grisel, J.E., Carliss, R.D., Soutullo, M.D., Davis, J.H., Rogers, R.D.: The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 31, 1429–1436 (2007)

    Article  CAS  Google Scholar 

  7. Ferraz, R., Branco, L.C., Prudencio, C., Noronha, J.P., Petrovski, Z.: Ionic liquids as active pharmaceutical ingredients. Chem. Med. Chem. 6, 975–985 (2011)

    Article  CAS  Google Scholar 

  8. Bica, K., Rijksen, C., Nieuwenhuyzen, M., Rogers, R.D.: In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 12, 2011–2017 (2010)

    Article  CAS  Google Scholar 

  9. Stoimenovski, J., MacFarlane, D.R., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharmaceut. Res. 27, 521–526 (2010)

    Article  CAS  Google Scholar 

  10. Viau, L., Tourne-Peteilh, C., Devoisselle, J., Vioux, A.: Ionogels as drug delivery system: one-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid. Chem. Commun. 46, 228–230 (2010)

    Article  CAS  Google Scholar 

  11. Fei, Z., Geldbach, T.J., Zhao, D., Dyson, P.J.: From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem. A Eur. J. 12(8), 2122–2130 (2006)

    Article  CAS  Google Scholar 

  12. Nishi, N., Kawakami, T., Shigematsu, F., Yamamoto, M., Kakiuchi, T.: Fluorine-free and hydrophobic room-temperature ionic liquids, tetraalkylammonium bis(2-ethylhexyl) sulfosuccinates, and their ionic liquid–water two-phase properties. Green Chem. 8, 349–355 (2006)

    Article  CAS  Google Scholar 

  13. Jencks, W.P.: Catalysis in Chemistry and Enzymology. McGraw Hill, New York (1969)

    Google Scholar 

  14. Von Hippel, P.H., Schleich, T.: Ion effects on the solution structure of biological macromolecules. Acc. Chem. Res. 2, 257–265 (1969)

    Article  Google Scholar 

  15. Voet, D., Voet, J.G.: Biochemistry, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  16. Hvidt, A., Westh, P.: Different views on the stability of protein conformations and hydrophobic effects. J. Solution Chem. 27, 395–402 (1998)

    Article  CAS  Google Scholar 

  17. Lavrich, R.J., Torok, C.R., Tubergen, M.J.: Effect of the bulky side chain on the backbone structure of the amino acid derivative valinamide. J. Phys. Chem. A 106, 8013–8018 (2002)

    Article  CAS  Google Scholar 

  18. Shekaari, H., Jebali, F.: Densities, viscosities, electrical conductances, and refractive indices of amino acid + ionic liquid ([BMIm]Br) + water mixtures at 298.15 K. J. Chem. Eng. Data 55, 2517–2523 (2010)

    Article  CAS  Google Scholar 

  19. Shekaari, H., Jebali, F.: Densities and electrical conductances of amino acids + ionic liquid ([HMIm]Br) + H2O mixtures at 298.15 K. Fluid Phase Equilib. 295, 68–75 (2010)

    Article  CAS  Google Scholar 

  20. Shekaari, H., Jebali, F.: Solute–solvent interactions of amino acids in aqueous 1-propyl-3-methylimidazolium bromide ionic liquid solutions at 298.15 K. J. Solution Chem. 39, 1409–1427 (2010)

    Article  CAS  Google Scholar 

  21. Fang, S., Ren, D.H.: Effect of 1-ethyl-3-methylimidazolium bromide ionic liquid on the volumetric behavior of some aqueous l-amino acids solutions. J. Chem. Eng. Data 58, 845–850 (2013)

    Article  CAS  Google Scholar 

  22. Roy, M.N., De, P., Sikdar, P.S.: Study of solvation consequences of α-amino acids in aqueous ionic liquid solution probed by physicochemical approach. Fluid Phase Equilib. 352, 7–13 (2013)

    Article  CAS  Google Scholar 

  23. Vasantha, T., Kumar, A., Attri, P., Venkatesu, P., Devi, R.S.R.: Influence of biocompatible ammonium ionic liquids on the solubility of l-alanine and l-valine in water. Fluid Phase Equilib. 335, 39–45 (2012)

    Article  CAS  Google Scholar 

  24. Vasantha, T., Kumar, A., Attri, P., Venkatesu, P., Devi, R.S.R.: The solubility and stability of amino acids in biocompatible ionic liquids. Lett. Protein Peptide Lett. 21, 15–24 (2014)

    Article  CAS  Google Scholar 

  25. Singh, V., Chhotaray, P.K., Banipal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of amino acids in aqueous solutions of ammonium based protic ionic liquids. Fluid Phase Equilib. 385, 258–274 (2015)

    Article  CAS  Google Scholar 

  26. Kumar, H., Singla, M., Jindal, R.: Interactions of glycine, l-alanine and l-valine with aqueous solutions of trisodium citrate at different temperatures: A volumetric and acoustic approach. J. Chem. Thermodyn. 67, 170–180 (2013)

    Article  CAS  Google Scholar 

  27. Rima, F.R.: Monirul Islam, M., Nazrul Islam, M.: Excess volume of water in hydrate complexes of some α-amino acids. J. Chem. Eng. Data 58, 2991–2997 (2013)

    Article  CAS  Google Scholar 

  28. Kumar, H., Kaur, K.: Effect of dipotassium hydrogen phosphate on thermodynamic properties of glycine and l-alanine in aqueous solutions at different temperatures. J. Chem. Thermodyn. 53, 86–92 (2012)

    Article  CAS  Google Scholar 

  29. Sadeghi, R., Goodarzi, B.: Apparent molar volumes and isentropic compressibilities of transfer of l-alanine from water to aqueous potassium di-hydrogen citrate and tri-potassium citrate at T = (283.15 to 308.15) K. J. Mol. Liq. 14, 62–68 (2008)

    Article  Google Scholar 

  30. Fortin, T.J., Laesecke, A., Freund, M., Outcalt, S.: Advanced calibration, adjustment, and operation of a density and sound speed analyzer. J. Chem. Thermodyn. 57, 276–285 (2013)

    Article  CAS  Google Scholar 

  31. Holbrey, J.D., Seddon, K.R.: The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans. 13, 2133–2140 (1999)

    Article  Google Scholar 

  32. Tourne-Peteilh, C., Devoisselle, J.M., Vioux, A., Judeinstein, P., Inc, M., Viau, L.: Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys. Chem. Chem. Phys. 13, 15523–15529 (2011)

    Article  CAS  Google Scholar 

  33. Hedwig, G.R., Reading, J.F., Lilley, T.H.: Aqueous solutions containing amino acids and peptides. Part 27. Partial molar heat capacities and partial molar volumes of some N-acetyl amino acid amides, some N-acetyl peptide amides and two peptides at 25 °C. J. Chem. Soc. Faraday Trans. 87, 1751–1758 (1991)

    Article  CAS  Google Scholar 

  34. Kikuchi, K., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 40, 935–942 (1995)

    Article  CAS  Google Scholar 

  35. Islam, M.N., Wadi, R.K.: Effects of the coating process on nanoscale Y2O3: Eu3+ powders. Phys. Chem. Liq. 41, 533–535 (2003)

    Article  CAS  Google Scholar 

  36. Li, S.Z.F., Wang, B.H., Zhang, Y.M.: Partial molar volumes of some amino acids and a peptide in water, DMSO, NaCl, and DMSO/NaCl aqueous solutions. J. Chem. Thermodyn. 32, 805–819 (2000)

    Article  Google Scholar 

  37. Banipal, T.S., Kaur, J., Banipal, P.K., Singh, K.: Study of interactions between amino acids and zinc chloride in aqueous solutions through volumetric measurements at T = (288.15 to 318.15) K. J. Chem. Eng. Data 53, 1803–1816 (2008)

    Article  CAS  Google Scholar 

  38. Pal, A., Kumar, S.: Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq. 109, 23–31 (2004)

    Article  CAS  Google Scholar 

  39. Kharakoz, D.P.: Volumetric properties of proteins and their analogs in diluted water solutions: 1. Partial volumes of amino acids at 15–55 °C. Biophys. Chem. 34, 115–125 (1989)

    Article  CAS  Google Scholar 

  40. Hakin, A.W., Duke, M.M., Klassen, S.A., McKay, R.M., Preuss, K.E.: Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K. J. Chem. 72(2), 362–368 (1994)

    CAS  Google Scholar 

  41. Lippert, K., Galinski, E.A.: Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl. Microbiol Biotechnol. 37(1), 61–65 (1992)

    CAS  Google Scholar 

  42. Bhattacharya, M.M., Sengupta, M.: Ion-solvent interaction of amino acids: IV. Apparent molar volumes of amino acids in natural acidic and alkaline media at different temperatures. J. Indian Chem. Soc. 62, 959–964 (1985)

    CAS  Google Scholar 

  43. Millero, F.J.: Molal volumes of electrolytes. Chem. Rev. 71, 147–176 (1971)

    Article  CAS  Google Scholar 

  44. Marcus, Y., Hefter, G.: Standard partial molar volumes of electrolytes and Ions in nonaqueous solvents. Chem. Rev. 104, 3405–3452 (2004)

    Article  CAS  Google Scholar 

  45. Kumar, H., Singla, M., Jindal, R.: Solvation behavior of some amino acid compounds in aqueous solutions of trilithium citrate at different temperatures. J. Mol. Liq. 197, 301–314 (2014)

    Article  CAS  Google Scholar 

  46. Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)

    Article  CAS  Google Scholar 

  47. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

  48. Banerjee, T., Kishore, N.: Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15 K: a volumetric approach. J. Solution Chem. 34, 137–153 (2005)

    Article  CAS  Google Scholar 

  49. Bhat, R., Kishore, N., Ahluwalia, J.C.: Thermodynamic studies of transfer of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K. J. Chem. Soc. Faraday Trans. I(84), 2651–2655 (1988)

    Article  Google Scholar 

  50. Wadi, R.K., Ramasami, P.: Partial molal volumes and adiabatic compressibilities of transfer of glycine and Dl-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc. Faraday Trans. 93, 243–247 (1997)

    Article  CAS  Google Scholar 

  51. Sadeghi, R., Goodarzi, B.: Apparent molar volumes and isentropic compressibilities of transfer of l-alanine from water to aqueous potassium di-hydrogen citrate and tri-potassium citrate at T = (283.15 to 308.15) K. J. Mol. Liq. 141, 62–68 (2008)

    Article  CAS  Google Scholar 

  52. Gurney, R.W.: Ionic Process in Solution, Chap. 1. McGraw Hill, New York (1953)

    Google Scholar 

  53. Sharma, Kumar: S., Singh, G., Kumar, H., Kataria, R.: Study of solute–solute and solute–solvent interactions of N-acetyl glycine in aqueous d-fructose solutions at different temperatures. Thermochim. Acta 607, 1–8 (2015)

    Article  CAS  Google Scholar 

  54. Majdan-Cegincara, R., Zafarani-Moattar, M.T., Shekaari, H.: The study of solute–solvent interactions in 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate + acetonitrile from solvent activity, density, speed of sound, viscosity, electrical conductivity and refractive index measurements. J. Mol. Liq. 203, 198–203 (2015)

    Article  CAS  Google Scholar 

  55. Kumar, H., Kaur, K.: Volumetric, compressibility and UV spectral studies on interactions of amino acids with aqueous solutions of potassium dihydrogen phosphate at different temperatures. J. Solution Chem. 42, 592–614 (2013)

    Article  CAS  Google Scholar 

  56. Sadeghi, R., Gholamireza, A.: Thermodynamics of the ternary systems: (water + glycine, l-alanine and l-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements. J. Chem. Thermodyn. 43, 200–215 (2011)

    Article  CAS  Google Scholar 

  57. Sadheghi, R., Parhizkar, H.: Volumetric, isentropic compressibility and electrical conductivity of solutions of tri-sodium phosphate in 1-propanol + water mixed-solvent media over the temperature range of 283.15–303.15 K. Fluid Phase Equilib. 265, 173–183 (2008)

    Article  Google Scholar 

  58. Lin, G.M., Bian, P.F., Lin, R.S.: The limiting partial molar volume and transfer partial molar volume of glycylglycine in aqueous sodium halide solutions at 298.15 K and 308.15 K. J. Chem. Thermodyn. 38, 144–151 (2006)

    Article  CAS  Google Scholar 

  59. McMillan, W.G., Mayer, J.E.: The Statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  60. Krishnan, C.V., Friedman, H.L.: Enthalpies of alkyl sulfonates in water, heavy water, and water–alcohol mixtures and the interaction of water with methylene groups. J. Solution Chem. 2, 37–51 (1973)

    Article  Google Scholar 

  61. Kumar, H., Singla, M., Jindal, R.: Viscometric measurements of dipeptides of alanine in aqueous solutions of antibacterial drug ampicillin at different temperatures. J. Mol. Liq. 191, 183–188 (2014)

    Article  CAS  Google Scholar 

  62. Kumar, H., Singla, M., Jindal, R.: Interactions of amino acids in aqueous triammonium citrate solutions at different temperatures: A viscometric approach. J. Mol. Liq. 199, 385–392 (2014)

    Article  CAS  Google Scholar 

  63. Jindal, R., Singla, M., Kumar, H.: Transport behavior of aliphatic amino acids glycine/l-alanine/l-valine and hydroxyl amino acids l-serine/l-threonine in aqueous trilithium citrate solutions at different temperatures. J. Mol. Liq. 206, 343–349 (2015)

    Article  CAS  Google Scholar 

  64. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  65. Zhao, Q., Sun, Z.J., Zhang, Q., Xing, S.K., Liu, M., Sun, D.Z.: Densities and apparent molar volumes of myoinositol in aqueous solutions of alkaline earth metal salts at different temperatures. Thermochim. Acta 487, 1–7 (2009)

    Article  CAS  Google Scholar 

  66. Sarma, T.S., Ahiuwalia, J.C.: Experimental studies on the structures of aqueous solutions of hydrophobic solutes. Chem. Soc. Rev. 2, 203–232 (1973)

    Article  CAS  Google Scholar 

  67. Yan, Z., Wang, J., Liu, W., Lu, J.: Apparent molar volumes and viscosity B-coefficients of some α-amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 334, 17–27 (1999)

    Article  CAS  Google Scholar 

  68. Wadi, R.K., Goyal, R.K.: Temperature dependence of apparent molar volumes and viscosity B-coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35 °C. J. Solution Chem. 21, 163–170 (1992)

    Article  CAS  Google Scholar 

  69. Banipal, T.S., Kaur, N., Kaur, A., Gupta, M., Banipal, P.K.: Effect of food preservatives on the hydration properties and taste behavior of amino acids. Food Chem. 181, 339–346 (2015)

    Article  CAS  Google Scholar 

  70. Feakins, D., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. Part 1. A new theory of the Jones–Dole B-coefficient and the related activation parameters: application to aqueous solutions. J. Chem. Soc. Faraday Trans. I(82), 563–568 (1986)

    Article  Google Scholar 

  71. Tjahjono, M., Garland, M.: On the Determination of partial molar volumes, partial molar refractions, mean electronic polarizabilities and effective molecular radii from dilute multi-component data alone using response surface models. J. Solution Chem. 36, 221–236 (2007)

    Article  CAS  Google Scholar 

  72. Robinson, R.H., Stokes, R.H.: Electrolyte Solutions. Butterworth, London (1955)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the graduate council of the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekaari, H., Zafarani-Moattar, M.T. & Mirheydari, S.N. Effect of 1-Butyl-3-methylimidazolium Ibuprofenate as an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) on the Thermodynamic Properties of Glycine and l-Alanine in Aqueous Solutions at Different Temperatures. J Solution Chem 45, 624–663 (2016). https://doi.org/10.1007/s10953-016-0462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0462-1

Keywords

Navigation