Skip to main content
Log in

Chemical Transfer Energetics of a Series of Homologous α-Amino Acids in Quasi-Aprotic 2-Methoxyethanol–Water Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The zwitterionic solvation behavior of a series of the homologous α-amino acids glycine (Gly), DL-alanine (Ala), DL-α-amino butyric acids (Aba) and DL-nor-valine (Val), in water and in aqueous mixtures of 2-methoxyethanol, have been studied at equidistant temperature intervals in the range of 288.15–308.15 K, using the solubility method. The solubility data were analyzed according to the ‘formol titrimetric’ process. Standard Gibbs energies \( \Delta G_{\text{t}}^{ 0} (i) \) and entropies \( \Delta S_{\text{t}}^{ 0} (i) \) of transfer were calculated and are discussed. The observed \( \Delta G_{\text{t}}^{ 0} (i) \) and \( T\Delta S_{\text{t}}^{ 0} (i) \) versus composition profiles are complicated because of the various interaction effects. The chemical effects of the transfer Gibbs energies \( \Delta G_{{{\text{t}},{\text{ch}}}}^{ 0} (i) \) and entropies of transfer \( T\Delta S_{\text{t,ch}}^{ 0} (i) \) have been obtained after elimination of the cavity effect, estimated by the scaled particle theory and dipole–dipole interaction effects, calculated by use of the Keesom orientation expression. The chemical contributions to transfer energetics of homologous α-amino acids are guided by the combined effects of increased dispersion interaction, basicity and decreased acidity, hydrogen bonding effects and hydrophilic hydration of aqueous 2-methoxy ethanol as compared to that of reference solvent, water. In this context the solvating characters of protic ethylene glycol are also referred to for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das, P., Chatterjee, S., Basu Mallick, I.: Thermodynamic studies on amino acid solvation in some aqueous alcohols. J. Chin. Chem. Soc. 51, 1–6 (2004)

    Article  CAS  Google Scholar 

  2. Banipal, T.S., Singh, G., Lark, B.S.: Partial molar volumes of transfer of some amino acid from water to aqueous glycerol solutions at 25 °C. J. Solution Chem. 30, 657–670 (2001)

    Article  CAS  Google Scholar 

  3. Lapamje, S.: Physicochemical Aspects of Proteins Denaturation. Wiley Interscience, New York (1978)

    Google Scholar 

  4. Islam, M.N., Wadi, R.K.: Thermodynamics of transfer of amino acids from water to aqueous sodium sulphate. Phys. Chem. Liq. 39, 77–84 (2001)

    Article  CAS  Google Scholar 

  5. Köseoglu, F., Kiliçb, E., Dogan, A.: Studies on the protonation constants and solvation of α-amino acids in dioxan–water mixtures. Anal. Biochem. 277, 243–246 (2000)

    Article  Google Scholar 

  6. Anfinsen, C.B., Seheraga, H.A.: Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205–300 (1978)

    Article  Google Scholar 

  7. Reading, J.F., Watson, I.D., Gavin, R.H.: Thermodynamic properties of peptide solutions Partial molar volumes of glycylglycine, glycyl-DL-leucine, and glycyl-DL-serine at 308.15 and 318.15 K. J. Chem. Thermodyn. 22, 159–165 (1990)

    Article  CAS  Google Scholar 

  8. Nozaki, Y., Tanford, C.: The solubilities of amino acids and related compounds in aqueous urea solutions. J. Biol. Chem. 238, 4074–4081 (1963)

    CAS  Google Scholar 

  9. Abu-Hamdiyyah, M., Shehabuddin, A.: Transfer enthalpies and entropies of amino acids from water to urea solutions. J. Chem. Eng. Data 27, 74–76 (1982)

    Article  CAS  Google Scholar 

  10. Gekko, K., Timasheff, S.N.: Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677–4686 (1981)

    Article  CAS  Google Scholar 

  11. Sinha, R., Bhattacharya, S.K., Kundu, K.K.: Chemical transfer energetic of the -CH2- group in aqueous glycerol: solvent effect on hydrophobic hydration and its three-dimensional structure. J. Mol. Liq. 122, 95–103 (2005)

    Article  CAS  Google Scholar 

  12. Roy, S., Mahali, K., Dolui, B.K.: Thermodynamic studies of solvation a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol at 298.15 K. Biochem. Ind. J. 3(2), 63–68 (2009)

    Google Scholar 

  13. Ganguly, S., Kundu, K.K.: Transfer energetic of some DNA and RNA bases in aqueous mixtures of urea and glycerol. J. Phys. Chem. 97, 10862–10867 (1993)

    Article  CAS  Google Scholar 

  14. Chatterjee, S., Basumallick, I.: Thermodynamic studies on amino acid solvation in aqueous urea. J. Chin. Chem. Soc. 54, 1–6 (2007)

    Article  Google Scholar 

  15. Talukdar, H., Rudra, S.P., Kundu, K.K.: Thermodynamics of transfer of glycine, diglycine and triglycine from water to aqueous solutions of urea, glycerol, and sodium nitrate. Can. J. Chem. 66, 461–468 (1988)

    Article  CAS  Google Scholar 

  16. Dolui, B.K., Bhattacharyya, S.K., Kundu, K.K.: Single-ion transfer Gibbs energies in binary mixtures of isodielectric protic ethylene glycol and dipolar aprotic N,N-dimethylformamide. Indian J. Chem. 45A, 2607–2614 (2006)

    CAS  Google Scholar 

  17. Roy, S., Mahali, K., Dolui, B.K.: Transfer entropies of solvation of a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol. Biochem. Indian J. 4, 71–76 (2010)

    CAS  Google Scholar 

  18. Marcus, Y.: Ion Solvation, p. 314 . Willy, New York (1985)

    Google Scholar 

  19. Sinha, R., Kundu, K.K.: Transfer energetics of a series of homologous α-amino acids and hence of –CH2– group—A possible probe for the solvent effect on hydrophobic hydration and the hence three dimensional structuredness of aqueous cosolvents. J. Mol. Liq. 111, 151–159 (2004)

    Article  CAS  Google Scholar 

  20. Roy, S., Mahali, K., Dolui, B.K.: Thermodynamics of solvation of a series of homologous α-amino acids in aqueous mixtures of 1,2-dimethoxyethane. J. Solution Chem. 42, 1472–1487 (2013)

    Article  CAS  Google Scholar 

  21. Mahali, K., Roy, S., Dolui, B.K.: Thermodynamic solvation of a series of homologous α-amino acids in non-aqueous mixture of ethylene-glycol and N,N-dimethyl formamide. J. Biophys. Chem. 2, 185–193 (2011)

    Article  CAS  Google Scholar 

  22. Mahali, K., Roy, S., Dolui, B.K.: Solubility and solvation thermodynamics of a series of homologous α-amino acids in non-aqueous binary mixtures of ethylene glycol and dimethylsulfoxide. J. Chem. Eng. Data 60, 1233–1241 (2015)

    Article  CAS  Google Scholar 

  23. Mahali, K., Roy, S., Dolui, B.K.: Solvation thermodynamics of a series of homologous α-amino acids in non-aqueous binary mixtures of protic ethylene-glycol and dipolar aprotic acetonitrile. J. Solution Chem. 42, 1096–1110 (2013)

    Article  CAS  Google Scholar 

  24. Bhattacharyya, A., Bhattacharya, S.K.: Chemical transfer energies of some homologous amino acids and the –CH2– group in aqueous DMF: solvent effect on hydrophobic hydration and three dimensional solvent structures. J. Solution Chem. 42, 2149–2167 (2013)

    Article  CAS  Google Scholar 

  25. Held, C., Reschke, T., Müller, R., Kunz, W., Sadowski, G.: Measuring and modeling aqueous electrolyte/amino–acid solutions with ePC-SAFT. J. Chem. Thermodyn. 68, 1–12 (2014)

    Article  CAS  Google Scholar 

  26. Khoshkbarchi, M.K., Vera, J.H.: Effect of NaCl and KCl on the solubility of amino acids in aqueous solutions at 298.2 K: measurements and modelling. Ind. Eng. Chem. Res. 36, 2445–2451 (1997)

    Article  CAS  Google Scholar 

  27. Dalton, J.B., Schmidt, C.L.A.: The solubilities of certain amino acids in water, the densities of their solutions at 25°, and the calculated heats of solution and partial molal volumes. J. Biol. Chem. 103, 549–578 (1933)

    CAS  Google Scholar 

  28. Pradhan, A.A., Vera, J.H.: Effect of anions on the solubility of zwitterionic amino acids. J. Chem. Eng. Data 45, 140–143 (2000)

    Article  CAS  Google Scholar 

  29. Roy, S., Guin, P.S., Dolui, B.K.: Solubility and solvation thermodynamics of DL-nor- valine in aqueous solutions of NaCl and KCl. J. Mol. Liq. 211, 294–300 (2015)

    Article  CAS  Google Scholar 

  30. Ferreira, L.A., Macedo, E.A., Pinho, S.P.: Effect of KCl and Na2SO4 on the solubility of glycine and DL-alanine in water at 298.15 K. Indian Eng. Chem. Res. 44, 8892–8898 (2005)

    Article  CAS  Google Scholar 

  31. Roy, S., Mahali, K., Pal, S., Mondal, S., Dolui, B.K.: Solubility of α-amino butyric acid in water–NaNO3 mixture and analysis of related thermodynamic parameters. Anal. Chem. 15, 65–73 (2015)

    CAS  Google Scholar 

  32. Roy, S., Mahali, K., Akhter, S., Mondal, S., Dolui, B.K.: Thermodynamic solvation of α-amino butyric acid in aqueous mixture of dipolar aprotic N,N-dimethyl formamide. Asian J. Chem. 25, 6661–6665 (2013)

    Article  CAS  Google Scholar 

  33. Bates, R.G., Coetzee, S.F.: Solute–Solvent Interactions, pp. 45–96. Marcel Dekker, New York (1969)

    Google Scholar 

  34. Datta, J., Kundu, K.K.: Transfer thermodynamics of benzoic acid in aqueous mixtures of some ionic and non-ionic co-solvent and the structuredness of solvents. J. Phys. Chem. 86, 4055–4061 (1982)

    Article  CAS  Google Scholar 

  35. Datta, J., Kundu, K.K.: Transfer thermodynamics of p-nitro aniline in aqueous solutions of some ionic and non-ionic co-solvents and the structuredness of the solvents. Can. J. Chem. 61, 625–631 (1983)

    Article  CAS  Google Scholar 

  36. Gao, C., Vera, J.H.: The activity coefficients of glycine, DL-serine and DL-valine in aqueous solutions containing nitrates at 298.15 K. Can. J. Chem. Eng. 79, 392–401 (2001)

    Article  CAS  Google Scholar 

  37. Xu, X., Pinho, S.P., Macedo, E.A.: Activity coefficient and solubility of amino acids in water by the modified Wilson model. Ind. Eng. Chem. Res. 43, 3200–3204 (2004)

    Article  CAS  Google Scholar 

  38. Kuramochi, H., Noritomi, H., Hoshino, D., Nagahama, K.: Representation of activity coefficients of fundamental biochemicals in water by the UNIFAC model. Fluid Phase Equilib. 130, 117–132 (1997)

    Article  CAS  Google Scholar 

  39. Khoshkbarchi, M.K., Vera, J.H.: A simplified perturbed hard-sphere model for the activity coefficients of amino acids and peptides in aqueous solutions. Ind. Eng. Chem. Res. 35, 4319–4327 (1996)

    Article  CAS  Google Scholar 

  40. Khoshkbarchi, M.K., Vera, J.H.: A perturbed hard-sphere model with mean spherical approximation for the activity coefficients of amino acids in aqueous electrolyte solutions. Indian Eng. Chem. Res. 35, 4755–4766 (1996)

    Article  CAS  Google Scholar 

  41. Liu, J.-C., Lu, J.-F., Li, Y.-G.: Study on the activity coefficients and solubilities of amino acids in water by the perturbation theory. Fluid Phase Equilib. 142, 67–82 (1998)

    Article  CAS  Google Scholar 

  42. Khoshkbarchi, M.K., Vera, J.H.: A theoretically improved perturbation model for activity coefficients of amino acids and peptides in aqueous solutions. Ind. Eng. Chem. Res. 37, 3052–3057 (1998)

    Article  CAS  Google Scholar 

  43. Mortazavi-Manesh, S., Ghotbi, C., Taghikhani, V.: A new model for predicting activity coefficients in aqueous solutions of amino acids and peptides. J. Chem. Thermodyn. 35, 101–112 (2003)

    Article  CAS  Google Scholar 

  44. Hossain, A., Roy, S., Ghosh, S., Mondal, S., Dolui, B.K.: Solubility of DL-serine and DL-phenylalanine in aqueous mixtures of dimethyl sulfoxide and solvation thermodynamics. RSC Adv. 5, 69839–69847 (2015)

    Article  CAS  Google Scholar 

  45. Kim, J.I., Cocal, A., Born, H., Comma, E.A.: Preferential salvation of ions: a critical study of the Ph4AsPh4B assumption for single ion thermodynamics in mixed aqueous acetonitrile and aqueous-N, N-dimethyl-formamide solvents. Z. Phys. Chem. Neue Folge. 110, 209–227 (1978)

    Article  CAS  Google Scholar 

  46. Hill, N.E., Baughan, W.E., Price, A.H., Davics, M.: Dielectric Properties and Moleculer Behaviour. Van Nostrand Reinhold Co., London (1969)

    Google Scholar 

  47. Guha, P.K., Kundu, K.K.: Thermodynamics of autoionization of 2-methoxyethanol + water mixtures and structuredness of the solvents. Can. J. Chem. 63, 804–808 (1985)

    Article  CAS  Google Scholar 

  48. Das, B.: A study on the preferential solvation of ions in mixed aqueous binary solvent systems using the scaled particle theory. Bull. Chem. Soc. Jpn 67, 1217–1220 (1994)

    Article  CAS  Google Scholar 

  49. Dolui, B.K., Bhattacharyya, S.K., Kundu, K.K.: Autoprotolysis constants of ethylene glycol in isodielectric mixtures of ethylene glycol and N, N-dimethyl formamide at 298.15 K and related Gibbs energies of transfer. Indian J. Chem. 46A, 1081–1089 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Dolui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mahali, K. & Dolui, B.K. Chemical Transfer Energetics of a Series of Homologous α-Amino Acids in Quasi-Aprotic 2-Methoxyethanol–Water Mixtures. J Solution Chem 45, 574–590 (2016). https://doi.org/10.1007/s10953-016-0456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0456-z

Keywords

Navigation