Abstract
A generalized thermodynamic framework for correlating the vapor–liquid equilibria of aqueous primary, secondary and tertiary alkanolamine solutions is presented. The model uses Universal Functional Activity Coefficient (UNIFAC) and translated modified Peng–Robinson equation of state to correlate the activity and fugacity effects of the solution, respectively. New UNIFAC binary interaction parameters are reported for aqueous monoethanolamine, diethanolamine and N-methyldiethanolamine solutions for a wide range of temperature, pressure and concentration. The results are in excellent agreement with experimental data.
Similar content being viewed by others
References
Eimer, D.: Gas Treating: Absorption Theory and Practice. Wiley, Chichester (2014)
Nasr, G.G., Connor, N.E.: Natural Gas Engineering and Safety Challenges: Downstream Process, Analysis, Utilization and Safety. Springer International Publishing, Cham (2014)
Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., Attalla, M.: Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 43, 6427–6433 (2009)
Kohl, A.L., Nielsen, R.B.: Gas Purification. Elsevier Gulf, Houston (1997)
Vrachnos, A., Voutsas, E., Magoulas, K., Lygeros, A.: Thermodynamics of acid gas–MDEA–water systems. Ind. Eng. Chem. Res. 43, 2798–2804 (2004)
Austgen, D.M., Rochelle, G.T., Peng, X., Chen, C.C.: Model of vapor–liquid equilibria for aqueous acid gas–alkanolamine systems using the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 28, 1060–1073 (1989)
Posey, M.L., Rochelle, G.T.: A thermodynamic model of methyldiethanolamine-CO2-H2S-water. Ind. Eng. Chem. Res. 36, 3944–3953 (1997)
Zhang, Y., Chen, C.-C.: Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 50, 163–175 (2011)
Zhang, Y., Que, H., Chen, C.-C.: Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilib. 311, 67–75 (2011)
Nath, A., Bender, E.: Isothermal vapor–liquid equilibriums of binary and ternary mixtures containing alcohol, alkanolamine, and water with a new static device. J. Chem. Eng. Data 28, 370–375 (1983)
Xu, S., Qing, S., Zhen, Z., Zhang, C., Carroll, J.J.: Vapor pressure measurements of aqueous N-methyldiethanolamine solutions. Fluid Phase Equilib. 67, 197–201 (1991)
Cai, Z., Xie, R., Wu, Z.: Binary isobaric vapor–liquid equilibria of ethanolamines + water. J. Chem. Eng. Data 41, 1101–1103 (1996)
Tochigi, K., Akimoto, K., Ochi, K., Liu, F., Kawase, Y.: Isothermal vapor–liquid equilibria for water + 2-aminoethanol + dimethyl sulfoxide and its constituent three binary systems. J. Chem. Eng. Data 44, 588–590 (1999)
Horstmann, S., Mougin, P., Lecomte, F., Fischer, K., Gmehling, J.: Phase equilibrium and excess enthalpy data for the system methanol + 2,2′-diethanolamine + water. J. Chem. Eng. Data 47, 1496–1501 (2002)
Voutsas, E., Vrachnos, A., Magoulas, K.: Measurement and thermodynamic modeling of the phase equilibrium of aqueous N-methyldiethanolamine solutions. Fluid Phase Equilib. 224, 193–197 (2004)
Barreau, A., Mougin, P., Lefebvre, C., Luu Thi, Q.M., Rieu, J.: Ternary isobaric vapor–liquid equilibria of methanol + N-methyldiethanolamine + water and methanol + 2-amino-2-methyl-1-propanol + water systems. J. Chem. Eng. Data 52, 769–773 (2007)
Kim, I., Svendsen, H.F., Børresen, E.: Ebulliometric determination of vapor–liquid equilibria for pure water, monoethanolamine, n-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. J. Chem. Eng. Data 53, 2521–2531 (2008)
Belabbaci, A., Razzouk, A., Mokbel, I., Jose, J., Negadi, L.: Isothermal vapor–liquid equilibria of (monoethanolamine + water) and (4-methylmorpholine + water) binary systems at several temperatures. J. Chem. Eng. Data 54, 2312–2316 (2009)
Dell’Era, C., Uusi-Kyyny, P., Rautama, E.-L., Pakkanen, M., Alopaeus, V.: Thermodynamics of aqueous solutions of methyldiethanolamine and diisopropanolamine. Fluid Phase Equilib. 299, 51–59 (2010)
Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)
Magoulas, K., Tassios, D.: Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilib. 56, 119–140 (1990)
Chang, H.T., Posey, M., Rochelle, G.T.: Thermodynamics of alkanolamine–water solutions from freezing point measurements. Ind. Eng. Chem. Res. 32, 2324–2335 (1993)
Suleman, H., Nasir, Q., Maulud, A.S., Man, Z.: Comparative study of electrolyte thermodynamic models for carbon dioxide solubility in water at high pressure. Chem. Eng. Trans. 45, 589–594 (2015)
Suleman, H., Maulud, A.S., Man, Z.: Review and selection criteria of classical thermodynamic models for acid gas absorption in aqueous alkanolamines. Rev. Chem. Eng. 31, 599–639 (2015)
Rackett, H.G.: Equation of state for saturated liquids. J. Chem. Eng. Data 15, 514–517 (1970)
Kapteina, S., Slowik, K., Verevkin, S.P., Heintz, A.: Vapor pressures and vaporization enthalpies of a series of ethanolamines. J. Chem. Eng. Data 50, 398–402 (2005)
Noll, O., Valtz, A., Richon, D., Getachew-Sawaya, T., Mokbel, I., Jose, J.: Vapor pressures and liquid densities of N-methylethanolamine, diethanolamine, and N-methyldiethanolamine. ELDATA: Int. Electron. J. Phys. Chem. Data 4, 105–120 (1998)
Gmehling, J., Rarey, J., Menke, J., Fischer, K.: Manual of the Dortmund Data Bank Software Package (DDBSP). DDBST GmbH, Oldenburg (1996)
Tables, A.S.: Thermodynamic and Transport Properties of Steam. American Society of Mechanical Engineers, New York (1993)
Magnussen, T., Rasmussen, P., Fredenslund, A.: UNIFAC parameter table for prediction of liquid–liquid equilibriums. Ind. Eng. Chem. Process Des. Dev. 20, 331–339 (1981)
Touhara, H., Okazaki, S., Okino, F., Tanaka, H., Ikari, K., Nakanishi, K.: Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives. J. Chem. Thermodyn. 14, 145–156 (1982)
Kennard, M.L., Meisen, A.: Solubility of carbon dioxide in aqueous diethanolamine solutions at elevated temperatures and pressures. J. Chem. Eng. Data 29, 309–312 (1984)
Boukouvalas, C., Spiliotis, N., Coutsikos, P., Tzouvaras, N., Tassios, D.: Prediction of vapor–liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC. Fluid Phase Equilib. 92, 75–106 (1994)
Polishuk, I., Stateva, R.P., Wisniak, J., Segura, H.: Prediction of high pressure phase equilibria using cubic EOS: what can be learned? Can. J. Chem. Eng. 80, 927–942 (2002)
Segura, H., Kraska, T., Mejía, A., Wisniak, J., Polishuk, I.: Unnoticed pitfalls of soave-type alpha functions in cubic equations of state. Ind. Eng. Chem. Res. 42, 5662–5673 (2003)
Vrachnos, A., Kontogeorgis, G., Voutsas, E.: Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA–MDEA blends. Ind. Eng. Chem. Res. 45, 5148–5154 (2006)
Vallée, G., Mougin, P., Jullian, S., Fürst, W.: Representation of CO2 and H2S absorption by aqueous solutions of diethanolamine using an electrolyte equation of state. Ind. Eng. Chem. Res. 38, 3473–3480 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Suleman, H., Maulud, A.S. & Man, Z. A Fugacity Corrected Thermodynamic Framework for Aqueous Alkanolamine Solutions. J Solution Chem 45, 546–559 (2016). https://doi.org/10.1007/s10953-016-0453-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-016-0453-2