Skip to main content
Log in

A Fugacity Corrected Thermodynamic Framework for Aqueous Alkanolamine Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A generalized thermodynamic framework for correlating the vapor–liquid equilibria of aqueous primary, secondary and tertiary alkanolamine solutions is presented. The model uses Universal Functional Activity Coefficient (UNIFAC) and translated modified Peng–Robinson equation of state to correlate the activity and fugacity effects of the solution, respectively. New UNIFAC binary interaction parameters are reported for aqueous monoethanolamine, diethanolamine and N-methyldiethanolamine solutions for a wide range of temperature, pressure and concentration. The results are in excellent agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eimer, D.: Gas Treating: Absorption Theory and Practice. Wiley, Chichester (2014)

    Book  Google Scholar 

  2. Nasr, G.G., Connor, N.E.: Natural Gas Engineering and Safety Challenges: Downstream Process, Analysis, Utilization and Safety. Springer International Publishing, Cham (2014)

    Book  Google Scholar 

  3. Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., Attalla, M.: Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 43, 6427–6433 (2009)

    Article  CAS  Google Scholar 

  4. Kohl, A.L., Nielsen, R.B.: Gas Purification. Elsevier Gulf, Houston (1997)

    Google Scholar 

  5. Vrachnos, A., Voutsas, E., Magoulas, K., Lygeros, A.: Thermodynamics of acid gas–MDEA–water systems. Ind. Eng. Chem. Res. 43, 2798–2804 (2004)

    Article  CAS  Google Scholar 

  6. Austgen, D.M., Rochelle, G.T., Peng, X., Chen, C.C.: Model of vapor–liquid equilibria for aqueous acid gas–alkanolamine systems using the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 28, 1060–1073 (1989)

    Article  CAS  Google Scholar 

  7. Posey, M.L., Rochelle, G.T.: A thermodynamic model of methyldiethanolamine-CO2-H2S-water. Ind. Eng. Chem. Res. 36, 3944–3953 (1997)

    Article  CAS  Google Scholar 

  8. Zhang, Y., Chen, C.-C.: Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 50, 163–175 (2011)

    Article  CAS  Google Scholar 

  9. Zhang, Y., Que, H., Chen, C.-C.: Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilib. 311, 67–75 (2011)

    Article  CAS  Google Scholar 

  10. Nath, A., Bender, E.: Isothermal vapor–liquid equilibriums of binary and ternary mixtures containing alcohol, alkanolamine, and water with a new static device. J. Chem. Eng. Data 28, 370–375 (1983)

    Article  CAS  Google Scholar 

  11. Xu, S., Qing, S., Zhen, Z., Zhang, C., Carroll, J.J.: Vapor pressure measurements of aqueous N-methyldiethanolamine solutions. Fluid Phase Equilib. 67, 197–201 (1991)

    Article  CAS  Google Scholar 

  12. Cai, Z., Xie, R., Wu, Z.: Binary isobaric vapor–liquid equilibria of ethanolamines + water. J. Chem. Eng. Data 41, 1101–1103 (1996)

    Article  CAS  Google Scholar 

  13. Tochigi, K., Akimoto, K., Ochi, K., Liu, F., Kawase, Y.: Isothermal vapor–liquid equilibria for water + 2-aminoethanol + dimethyl sulfoxide and its constituent three binary systems. J. Chem. Eng. Data 44, 588–590 (1999)

    Article  CAS  Google Scholar 

  14. Horstmann, S., Mougin, P., Lecomte, F., Fischer, K., Gmehling, J.: Phase equilibrium and excess enthalpy data for the system methanol + 2,2′-diethanolamine + water. J. Chem. Eng. Data 47, 1496–1501 (2002)

    Article  CAS  Google Scholar 

  15. Voutsas, E., Vrachnos, A., Magoulas, K.: Measurement and thermodynamic modeling of the phase equilibrium of aqueous N-methyldiethanolamine solutions. Fluid Phase Equilib. 224, 193–197 (2004)

    Article  CAS  Google Scholar 

  16. Barreau, A., Mougin, P., Lefebvre, C., Luu Thi, Q.M., Rieu, J.: Ternary isobaric vapor–liquid equilibria of methanol + N-methyldiethanolamine + water and methanol + 2-amino-2-methyl-1-propanol + water systems. J. Chem. Eng. Data 52, 769–773 (2007)

    Article  CAS  Google Scholar 

  17. Kim, I., Svendsen, H.F., Børresen, E.: Ebulliometric determination of vapor–liquid equilibria for pure water, monoethanolamine, n-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. J. Chem. Eng. Data 53, 2521–2531 (2008)

    Article  CAS  Google Scholar 

  18. Belabbaci, A., Razzouk, A., Mokbel, I., Jose, J., Negadi, L.: Isothermal vapor–liquid equilibria of (monoethanolamine + water) and (4-methylmorpholine + water) binary systems at several temperatures. J. Chem. Eng. Data 54, 2312–2316 (2009)

    Article  CAS  Google Scholar 

  19. Dell’Era, C., Uusi-Kyyny, P., Rautama, E.-L., Pakkanen, M., Alopaeus, V.: Thermodynamics of aqueous solutions of methyldiethanolamine and diisopropanolamine. Fluid Phase Equilib. 299, 51–59 (2010)

    Article  Google Scholar 

  20. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    Article  CAS  Google Scholar 

  21. Magoulas, K., Tassios, D.: Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilib. 56, 119–140 (1990)

    Article  CAS  Google Scholar 

  22. Chang, H.T., Posey, M., Rochelle, G.T.: Thermodynamics of alkanolamine–water solutions from freezing point measurements. Ind. Eng. Chem. Res. 32, 2324–2335 (1993)

    Article  CAS  Google Scholar 

  23. Suleman, H., Nasir, Q., Maulud, A.S., Man, Z.: Comparative study of electrolyte thermodynamic models for carbon dioxide solubility in water at high pressure. Chem. Eng. Trans. 45, 589–594 (2015)

    Google Scholar 

  24. Suleman, H., Maulud, A.S., Man, Z.: Review and selection criteria of classical thermodynamic models for acid gas absorption in aqueous alkanolamines. Rev. Chem. Eng. 31, 599–639 (2015)

    Article  CAS  Google Scholar 

  25. Rackett, H.G.: Equation of state for saturated liquids. J. Chem. Eng. Data 15, 514–517 (1970)

    Article  CAS  Google Scholar 

  26. Kapteina, S., Slowik, K., Verevkin, S.P., Heintz, A.: Vapor pressures and vaporization enthalpies of a series of ethanolamines. J. Chem. Eng. Data 50, 398–402 (2005)

    Article  CAS  Google Scholar 

  27. Noll, O., Valtz, A., Richon, D., Getachew-Sawaya, T., Mokbel, I., Jose, J.: Vapor pressures and liquid densities of N-methylethanolamine, diethanolamine, and N-methyldiethanolamine. ELDATA: Int. Electron. J. Phys. Chem. Data 4, 105–120 (1998)

    CAS  Google Scholar 

  28. Gmehling, J., Rarey, J., Menke, J., Fischer, K.: Manual of the Dortmund Data Bank Software Package (DDBSP). DDBST GmbH, Oldenburg (1996)

    Google Scholar 

  29. Tables, A.S.: Thermodynamic and Transport Properties of Steam. American Society of Mechanical Engineers, New York (1993)

    Google Scholar 

  30. Magnussen, T., Rasmussen, P., Fredenslund, A.: UNIFAC parameter table for prediction of liquid–liquid equilibriums. Ind. Eng. Chem. Process Des. Dev. 20, 331–339 (1981)

    Article  CAS  Google Scholar 

  31. Touhara, H., Okazaki, S., Okino, F., Tanaka, H., Ikari, K., Nakanishi, K.: Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives. J. Chem. Thermodyn. 14, 145–156 (1982)

    Article  CAS  Google Scholar 

  32. Kennard, M.L., Meisen, A.: Solubility of carbon dioxide in aqueous diethanolamine solutions at elevated temperatures and pressures. J. Chem. Eng. Data 29, 309–312 (1984)

    Article  CAS  Google Scholar 

  33. Boukouvalas, C., Spiliotis, N., Coutsikos, P., Tzouvaras, N., Tassios, D.: Prediction of vapor–liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC. Fluid Phase Equilib. 92, 75–106 (1994)

    Article  CAS  Google Scholar 

  34. Polishuk, I., Stateva, R.P., Wisniak, J., Segura, H.: Prediction of high pressure phase equilibria using cubic EOS: what can be learned? Can. J. Chem. Eng. 80, 927–942 (2002)

    Article  CAS  Google Scholar 

  35. Segura, H., Kraska, T., Mejía, A., Wisniak, J., Polishuk, I.: Unnoticed pitfalls of soave-type alpha functions in cubic equations of state. Ind. Eng. Chem. Res. 42, 5662–5673 (2003)

    Article  CAS  Google Scholar 

  36. Vrachnos, A., Kontogeorgis, G., Voutsas, E.: Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA–MDEA blends. Ind. Eng. Chem. Res. 45, 5148–5154 (2006)

    Article  CAS  Google Scholar 

  37. Vallée, G., Mougin, P., Jullian, S., Fürst, W.: Representation of CO2 and H2S absorption by aqueous solutions of diethanolamine using an electrolyte equation of state. Ind. Eng. Chem. Res. 38, 3473–3480 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhalim Shah Maulud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleman, H., Maulud, A.S. & Man, Z. A Fugacity Corrected Thermodynamic Framework for Aqueous Alkanolamine Solutions. J Solution Chem 45, 546–559 (2016). https://doi.org/10.1007/s10953-016-0453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0453-2

Keywords

Navigation