Skip to main content
Log in

Equilibrium and Multinuclear NMR Spectroscopic Studies of Di- and Trimethyltin(IV) Moieties with Hydroxycarboxylic Acids in Aqueous Medium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The complex formation of [Me2Sn]2+/[Me3Sn]+ with glucuronic [(HL-1)], mandelic [(HL-2)] and gallic [(HL-3)] acids has been studied potentiometrically in aqueous solution (I = 1.0 mol·dm−3 KNO3, 298 ± 0.1 K) and the speciation of various complex species has been evaluated as a function of pH. The results show that these hydroxycarboxylic acid ligands (HL) coordinate via the deprotonated oxygen atom of the carboxylate group resulting in the formation of mixed hydroxo species [Me2Sn(L)(OH)] (12.6–46.2 % in 1:1, 18.3–64.0 % in 1:2) along with [Me2Sn(L)]+ (9.2–18.0 % in 1:1, 14.8–27.8 % in 1:2) in Me2Sn(IV)–(HL) systems and single 1:1 species [Me3Sn(L)] (7.1–12.2 % in 1:1, 13.2–21.7 % in 1:2) in Me3Sn(IV)–(HL) systems at acidic pHs. At physiological pH ~7.0, the major species is [Me2Sn(OH)2] (96.0–97.5 % in 1:1, 92.4–97.2 % in 1:2) with minor amount of [Me2Sn(L)(OH)] (0.4–2.5 % in 1:1, 1.0–5.8 % in 1:2) in Me2Sn(IV)–(HL) systems. Similarly, in Me3Sn(IV)–(HL) systems the major species formed is [Me3Sn(OH)] (86.6–91.5 % in 1:1, 84.7–89.3 % in 1:2) with a very small amount of [Me3Sn(L)] (1.0–1.4 % in 1:1, 1.7–3.0 % in 1:2). At pH >8.0, only hydroxo species are formed, viz. [Me2Sn(OH)2], [Me2Sn(OH)3] and [Me3Sn(OH)]. In all of the systems, no polymeric species were observed in the studied pH range. Multinuclear (1H, 13C and 119Sn) NMR studies, carried out at different pHs, confirmed the species formation and led us to propose their possible geometries in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Nath, M., Eng, G., Song, X., Beraldo, H., De Lima, G.M., Pettinari, C., Marchetti, F., Whalen, M.M., Beltrán, H.I., Santillan, R., Farfán, N.: Medicinal/biocidal applications of tin compounds and environmental aspects. In: Davies, A.G., Gielen, M., Pannell, K.H., Tiekink, E.R.T. (eds.) Tin Chemistry, Fundamentals, Frontiers, and Applications, 1st edn., Chap. 4. Wiley, London (2008)

  2. Appel, K.E.: Organotin compounds: toxicokinetic aspects. Drug Metab. Rev. 36, 763–786 (2004)

    Article  CAS  Google Scholar 

  3. Pagliarani, A., Trombetti, F., Ventrella, V. (eds.): Biochemical and Biological Effects of Organotins, 1st edn. Bentham Science, Sharjah (2012)

    Google Scholar 

  4. Champ, M.A.: A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Total Environ. 258, 21–71 (2000)

    Article  CAS  Google Scholar 

  5. Frache, R., Rivaro, P.: Occurrence, pathways and bioaccumulation of organometallic compounds in marine environments. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Chemical Processes in Marine Environment, 1st edn., Chap. 10. Springer, Berlin (2000)

  6. Gianguzza, A., Giuffrè, O., Piazzese, D., Sammartano, S.: Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coord. Chem. Rev. 256, 222–239 (2012)

    Article  CAS  Google Scholar 

  7. De Stefano, C., Foti, C., Gianguzza, A., Marrone, F., Sammartano, S.: Hydrolysis of methyltin(IV) trichloride in aqueous NaCl and NaNO3 solutions at different ionic strengths and temperatures. Appl. Organomet. Chem. 13, 805–811 (1999)

    Article  Google Scholar 

  8. De Stefano, C., Foti, C., Gianguzza, A., Martino, M., Pellerito, L., Sammartano, S.: Hydrolysis of (CH3)2Sn2+ in different ionic media: salt effects and complex formation. J. Chem. Eng. Data 41, 511–515 (1996)

    Article  Google Scholar 

  9. Hynes, M.J., Keely, J.M., McManus, J.: Investigation of the hydrolysis of [Sn(CH3)3(H2O)2]+ in aqueous solution by Tin-119 Nuclear Magnetic Resonance spectroscopy. J. Chem. Soc. Dalton Trans 12, 3427–3429 (1991)

    Article  Google Scholar 

  10. Cigala, R.M., De Stefano, C., Giacalone, A., Gianguzza, A., Sammartano, S.: Hydrolysis of monomethyl-, dimethyl-, and trimethyltin(IV) cations in fairly concentrated aqueous solutions at I = 1 mol·L−1 (NaNO3) and T = 298.15 K. Evidence for the predominance of polynuclear species. J. Chem. Eng. Data 56, 1108–1115 (2011)

    Article  CAS  Google Scholar 

  11. De Stefano, C., Foti, C., Gianguzza, A., Millero, F.J., Sammartano, S.: Hydrolysis of (CH3)3Sn+ in various salt media. J. Solution Chem. 28, 959–972 (1999)

    Article  Google Scholar 

  12. El-Sherif, A.A.: Solution coordination chemistry of organotin(IV) cations with bio-relevant ligands. J. Solution Chem. 41, 1522–1554 (2012)

    Article  CAS  Google Scholar 

  13. Takahashi, A., Natsume, T., Koshino, N., Funahashi, S., Inada, Y., Takagi, H.D.: Speciation of trimethyltin(IV): hydrolysis, complexation equilibria, and structures of trimethyltin(IV) ion in aqueous solution. Can. J. Chem. 75, 1084–1092 (1997)

    Article  CAS  Google Scholar 

  14. Mohamed, M.M.A., Shoukry, M.M.: Interaction of diphenyltin(IV) dichloride with some selected bioligands. Chem. Pharm. Bull. 49, 253–257 (2001)

    Article  CAS  Google Scholar 

  15. Nath, M., Kompelli, N.: Speciation and NMR spectrometric studies of interaction of di- and triorganotin(IV) moieties with 5′-guanosine monophosphate and guanosine in aqueous solution. J. Solution Chem. 43, 1184–1204 (2014)

    Article  CAS  Google Scholar 

  16. Nath, M., Jairath, R., Mukherjee, G.N., Das, A.: Speciation of dimethyltin(IV) and trimethyltin(IV) cations with some biologically important ligands in aqueous medium: a potentiometric investigation. Indian J. Chem. 44A, 1602–1607 (2005)

    CAS  Google Scholar 

  17. Nath, M.: Sulaxna.: potentiometric and multinuclear NMR investigations of di-/trimethyltin(IV) cations with some heterocyclic thiones in aqueous media. New J. Chem. 31, 418–428 (2007)

    Article  CAS  Google Scholar 

  18. Jankovics, H., Nagy, L., Kele, Z., Pettinari, C., D’Agati, P., Mansueto, C., Pellerito, C., Pellerito, L.: Coordination properties of the ACE inhibitor captopril towards Me2Sn(IV)2+ in aqueous solution, and biological aspects of some dialkyltin(IV) derivatives of this ligand. J. Organomet. Chem. 668, 129–139 (2003)

    Article  CAS  Google Scholar 

  19. Pellerito, L., Nagy, L.: Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 224, 111–150 (2002)

    Article  CAS  Google Scholar 

  20. Buck-Koehntop, B.A., Porcelli, F., Lewin, J.L., Cramer, C.J., Veglia, G.: Biological chemistry of organotin compounds: interactions and dealkylation by dithiols. J. Organomet. Chem. 691, 1748–1755 (2006)

    Article  CAS  Google Scholar 

  21. Gielen, M.: Tin based anti-tumour drugs. Coord. Chem. Rev. 151, 41–51 (1996)

    Article  CAS  Google Scholar 

  22. Siebenlist, K.R., Taketa, F.: Interactions of triethyltin bromide with components of the red cell. Toxicol. Appl. Pharmacol. 58, 67–75 (1981)

    Article  CAS  Google Scholar 

  23. Ali, A.A., Upreti, R.K., Kidway, A.M.: Interaction of di- and tributyltin chloride with human erythrocyte membrane. Toxicol. Appl. Pharmacol. 38, 13–18 (1987)

    CAS  Google Scholar 

  24. Jancsó, A., Nagy, L., Moldrheim, E., Sletten, E.: Potentiometric and spectroscopic evidence for coordination of dimethytin(IV) to phosphate groups of DNA fragments and related ligands. J. Chem. Soc. Dalton Trans. 10, 1587–1594 (1999)

    Article  Google Scholar 

  25. Hynes, M.J., Dowd, M.O.: Interactions of the trimethyltin(IV) cation with carboxylic acids, amino acids, and related ligands. J. Chem. Soc. Dalton Trans. 3, 563–566 (1987)

    Article  Google Scholar 

  26. Buzás, N., Gajda, T., Kuzmann, E., Nagy, L., Vértes, A., Burger, K.: Coordination properties of l-cysteine and its derivatives towards diethyltin(IV) in aqueous solution. Main Group Met. Chem. 18, 641–649 (1995)

    Article  Google Scholar 

  27. Capolongo, F., Giuliani, A.M., Giomini, M., Russo, U.: Interactions of organotin(IV) halides with reduced glutathione in aqueous solution. J. Inorg. Biochem. 49, 275–293 (1993)

    Article  CAS  Google Scholar 

  28. Furlán, R.L.E., Mata, E.G., Mascaretti, O.A.: Efficient, non-acidolytic method for the selective cleavage of N-Boc amino acid and peptide phenacyl esters linked to a polystyrene resin. J. Chem. Soc. Perkin Trans. 1, 355–358 (1998)

    Article  Google Scholar 

  29. Szorcsik, A., Nagy, L., Gyurcsik, B., Vankó, G., Krämer, R., Vértes, A., Yamaguchi, T., Yoshida, K.: Organotin(IV) complexes of polyhydroxyalkyl carboxylic acids and some related ligands. J. Radioanal. Nucl. Chem. 260, 459–469 (2004)

    Article  CAS  Google Scholar 

  30. Arena, G., Gianguzza, A., Pellerito, L., Musumeci, S., Purrello, R., Rizzarelli, E.: Co-ordination properties of dialkyltin(IV) in aqueous solution. Thermodynamics of complex formation with carboxylic acids. J. Chem. Soc. Dalton Trans. 8, 2603–2608 (1990)

    Article  Google Scholar 

  31. Fiore, T., Foti, C., Gianguzza, A., Orecchio, S., Pellerito, L.: D-glucuronate complexes of mono-, di- and triorganotin(IV) compounds: potentiometric and Mössbauer spectroscopic investigations. Appl. Orgamomet. Chem. 16, 294–301 (2002)

    Article  CAS  Google Scholar 

  32. AlAlousi, A.S., Shehata, M.R., Shoukry, M.M., Mohamed, N.N.: Interaction of dimethyltin(IV) and trimethyltin(IV) with dehydroacetic acid. Chem. Spec. Bioavailab. 21, 1–6 (2009)

    Article  CAS  Google Scholar 

  33. Gajda-Schrantz, K., Nagy, L., Fiore, T., Pellerito, L., Gajda, T.: Equilibrium and spectroscopic studies of diethyltin(IV) complexes formed with hydroxymono- and di-carboxylic acids and their thioanalogues. J. Chem. Soc., Dalton Trans 2, 152–158 (2002)

    Article  Google Scholar 

  34. Cardiano, P., Giuffrè, O., Napoli, A., Sammartano, S.: Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(IV) cation–mercaptocarboxylate interaction in aqueous solution. New J. Chem. 33, 2286–2295 (2009)

    Article  CAS  Google Scholar 

  35. Jansco, A., Gajda, T., Szorcsik, A., Kiss, T., Henry, B., Vanko, G., Rubini, P.: Potentiometric and spectroscopic studies on the dimethyltin(IV) complexes of 2-hydroxyhippuric acid. J. Inorg. Biochem. 83, 187–192 (2001)

    Article  Google Scholar 

  36. Fazio, S.A., Uhlinger, D.J., Parker, J.H., White, D.C.: Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl. Environ. Microbial. 43, 1151–1159 (1982)

    CAS  Google Scholar 

  37. Christensen, B.E., Kjosbakken, J., Smidsrod, O.: Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, perphytic pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbial. 50, 837–845 (1985)

    CAS  Google Scholar 

  38. Guard, H.E., Coleman III, W.M., Ross, M.M.: On the characterization of the reaction of organotin compounds with D-glucuronic acid. Carbohydr. Res. 235, 41–51 (1992)

    Article  CAS  Google Scholar 

  39. Putten, P.L.: Mandelic acid and urinary tract infections. A. Van Leeuw. 45, 622–623 (1979)

    Article  Google Scholar 

  40. Taylor, M.B.: Summary of mandelic acid for the improvement of skin conditions. Cosmet. Dermatol. 21, 26–28 (1999)

    Google Scholar 

  41. Kroes, B.H., van den Berg, A.J., Quarles van Ufford, H.C., Van Dijk, H., Labadie, R.P.: Anti-inflammatory activity of gallic acid. Planta Med 58, 499–504 (1992)

    Article  CAS  Google Scholar 

  42. Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T., Ogihara, Y., Jiang, B.Y., Chen, Y.: Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 18, 1526–1530 (1995)

    Article  CAS  Google Scholar 

  43. Uozakia, M., Yamasaki, H., Katsuyama, Y., Higuchi, M., Higuti, T., Koyama, A.H.: Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Res. 73, 85–91 (2007)

    Article  Google Scholar 

  44. Kubola, J., Siriamornpun, S.: Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 110, 881–890 (2008)

    Article  CAS  Google Scholar 

  45. Nath, M., Vats, M., Roy, P.: Design, spectral characterization, anti-tumor and anti-inflammatory activity of triorganotin(IV) hydroxycarboxylates, apoptosis inducers: in vitro assessment of induction of apoptosis by enzyme, DNA-fragmentation, acridine orange and comet assays. Inorg. Chim. Acta 423, 70–82 (2014)

    Article  CAS  Google Scholar 

  46. Sizova, T.V., Yashina, N.S., Petrosyan, V.S., Yatsenko, A.V., Chernyshev, V.V., Aslanov, L.A.: X-ray structure investigation of trimethyltin α-phenyl-α-oxoacetate. J. Organomet. Chem. 453, 171–174 (1993)

    Article  CAS  Google Scholar 

  47. Gajda-Schrantz, K., Nagy, L., Kuzmann, E., Vértes, A.: Coordination sphere symmetry of di-n-butyltin(IV) complexes containing ligands with O, O donor atoms. J. Radioanal. Nucl. Chem. 232, 151–158 (1998)

    Article  CAS  Google Scholar 

  48. Terra, V.R., Barbiéri, R.S., CasteloBranco, P.A., Abras, A.: Synthesis and characterization of compounds diorganoestânicos acid dl-mandelic acid. Eclet. Chem. 23, 17–30 (1998)

    CAS  Google Scholar 

  49. Kohn, R., Kováč, P.: Dissociation constants of d-galacturonic and d-glucuronic acid and their O-methyl derivatives. Chem. Zvesti. 32, 478–485 (1978)

    CAS  Google Scholar 

  50. Cruywagen, J.J., Rohwer, E.A.: Equilibria and thermodynamic quantities for the reactions of molybdenum(VI) and tungsten(VI) with mandelate (α-hydroxybenzeneacetate). J. Chem. Soc. Dalton Trans. 21, 3433–3438 (1995)

    Article  Google Scholar 

  51. Beltrán, J.L., Sanli, N., Fonrodona, G., Barrón, D., Özkan, G., Barbosa, J.: Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media. Anal. Chim. Acta 484, 253–264 (2003)

    Article  Google Scholar 

  52. Natsume, T., Aizawa, S., Hatano, K., Funahashi, S.: Hydrolysis, polymerization and structure of dimethyltin(IV) in aqueous solution. Molecular structure of the polymer [(SnMe2)2(OH)3]ClO4. J. Chem. Soc. Dalton Trans. 19, 2749–2753 (1994)

    Article  Google Scholar 

  53. Caldeira, M.M., Ramos, M.L., Oliveira, N.C., Gil, V.M.S.: Complexes of vanadium(V) with α-hydroxycarboxylic acids studied by 1H, 13C, and 51V nuclear magnetic resonance spectroscopy. Can. J. Chem. 65, 2434–2440 (1987)

    Article  CAS  Google Scholar 

  54. Portanova, R., Lajunen, L.H.J., Tolazzi, M., Pisspanen, J.: Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes–Part II: aliphatic 2-hydroxycarboxylic acids. Pure Appl. Chem. 75, 495–540 (2003)

    Article  CAS  Google Scholar 

  55. Bermejo, E., Carballo, R., Castiñeiras, A., Lago, A.B.: Coordination of α-hydroxycarboxylic acids with first-row transition ions. Coord. Chem. Rev. 257, 2639–2651 (2013)

    Article  CAS  Google Scholar 

  56. Lockhart, T.P., Manders, W.F.: Structure determination by NMR spectroscopy. Correlation of [2 J(119Sn-1H)] and the Me–Sn–Me angle in methyltin(IV) compounds. Inorg. Chem. 25, 892–895 (1986)

    Article  CAS  Google Scholar 

  57. Surdy, P., Rubini, P., Buzás, N., Henry, B., Pellerito, L., Gajda, T.: Interaction of dimethyltin(IV)2+ cation with Gly-Gly, Gly-His, and some related ligands. A new case of a metal ion able to promote peptide nitrogen deprotonation in aqueous solution. Inorg. Chem. 38, 346–352 (1999)

    Article  CAS  Google Scholar 

  58. Holeček, J., Nádvorník, M., Handlíŕ, M., Lyčka, A.: 13C and 119Sn NMR spectra of di-n-butyltin(IV) compounds. J. Organomet. Chem. 315, 299–308 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

Ms. Mridula is thankful to the University Grants Commission (UGC), New Delhi, India, for awarding a Senior Research Fellowship (Grant No. 6405-13-044(061)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Nath.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mridula, Nath, M. Equilibrium and Multinuclear NMR Spectroscopic Studies of Di- and Trimethyltin(IV) Moieties with Hydroxycarboxylic Acids in Aqueous Medium. J Solution Chem 45, 445–462 (2016). https://doi.org/10.1007/s10953-016-0448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0448-z

Keywords

Navigation