Skip to main content
Log in

Kinetic and Mechanistic Aspects of Oxidation of Aminotriazole Formamidine by Cerium(IV) in Aqueous Perchloric and Sulfuric Acid Solutions: A Comparative Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The kinetics of the oxidation of an aminotriazole formamidine derivative, N,N-dimethyl-N′-(4H-1,2,4-triazol-3-yl) formamidine (ATF) by cerium(IV) has been studied spectrophotometrically in aqueous perchloric and sulfuric acid solutions at constant ionic strength of 1.0 mol·dm−3. In both acids, the reaction shows first order kinetics with respect to [Ce(IV)], whereas the orders with respect to [ATF] are less than unity. The reaction exhibits negative fractional order kinetics with respect to [H+]. The rates of reaction are not significantly affected by variations of either ionic strength or relative permittivity of the reaction’s media. Addition of cerium(III) product does not affect the rates. Plausible mechanistic schemes for the reactions have been proposed. In both cases, the final oxidation products were identified as aminotriazole, dimethyl amine and carbon dioxide. Under comparable experimental conditions, the oxidation rate in perchloric acid solution is about sixfold higher than that in sulfuric acid solution. The effect of temperature on the rates has also been studied and activation parameters have been evaluated and discussed. The rate laws associated with the reaction mechanisms are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Scheme 4

Similar content being viewed by others

References

  1. Fawzy, A.: Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: a comparative kinetic and mechanistic study. Carbohydr. Polym. 138, 356–364 (2016)

    Article  CAS  Google Scholar 

  2. Mathur, S., Yadav, M.B., Devra, V.: Kinetics and mechanism of uncatalyzed and Ag(I) catalyzed oxidation of hydroxylysine by cerium(IV) in acid medium. J. Phys. Chem. Biophys. 3, 5–12 (2013)

    Google Scholar 

  3. Mathur, S., Yadav, M.B., Devra, V.: Kinetics and mechanism of uncatalyzed and Ag(I) catalyzed oxidation of serine by cerium(IV) in acid medium. Int. J. Res. Phys. Chem. 5, 1–6 (2015)

    CAS  Google Scholar 

  4. Thabaj, K.A., Chimatadar, S.A., Nandibewoor, S.T.: Mechanistic study of oxidation of palladium(II) by cerium(IV) in aqueous acid. Transit. Met. Chem. 31, 186–193 (2006)

    Article  CAS  Google Scholar 

  5. Bolattin, M., Meti, M., Nandibewoor, S.T., Chimatadar, S.A.: Catalytic activity of ruthenium(III) and thermodynamic study of oxidative degradation of chloramphenicol by cerium(IV) in sulfuric acid medium. J. Solution Chem. 44, 152–169 (2015)

    Article  CAS  Google Scholar 

  6. Hosahalli, R.V., Savanur, A.P., Nandibewoor, S.T., Chimatadar, S.A.: Ruthenium(III)-mediated oxidation of D-mannitol by cerium(IV) in aqueous sulfuric acid medium: a kinetic and mechanistic approach. Int. J. Chem. Kinet. 42, 440–452 (2010)

    Article  CAS  Google Scholar 

  7. Das, A.K., Islam, M., Bayen, R.: Studies on kinetics and mechanism of oxidation of D-sorbitol and D-mannitol by cerium(IV) in aqueous micellar sulfuric acid media. Int. J. Chem. Kinet. 40, 445–453 (2008)

    Article  CAS  Google Scholar 

  8. Adari, K.K., Nowduri, A., Parvataneni, V.: Kinetics and mechanism of oxidation of L-cystine by cerium(IV) in sulphuric acid medium. Acta Chim. Slov. 55, 425–429 (2008)

    CAS  Google Scholar 

  9. Sumathi, T., Shanmugasundaram, P., Chandramohan, G.: A kinetic and mechanistic study on the silver(I) catalyzed oxidation of l-serine by cerium(IV) in sulfuric acid medium. J. Saudi Chem. Soc. 17, 227–235 (2011)

    Article  Google Scholar 

  10. Hassan, R.M., Alaraifi, A., Fawzy, A., Zaafarany, I.A., Khairou, K.S., Ikeda, Y., Takagi, H.D.: Acid-catalyzed oxidation of some sulfated polysaccharides. Kinetics and mechanism of oxidation of kappa-carrageenan by cerium(IV) in aqueous perchlorate solutions. J. Mol. Cat. A 332, 138–144 (2010)

    Article  CAS  Google Scholar 

  11. Naik, D.V., Byadagi, K.S., Nandibewoor, S.T., Chimatadar, S.A.: Kinetics and mechanistic study of manganese(II)-catalyzed cerium(IV) oxidation of thiamine hydrochloride in aqueous perchloric acid medium by stopped flow technique. Monatsh. Chem. 144, 1307–1317 (2013)

    Article  CAS  Google Scholar 

  12. Byadagi, K.S., Naik, D.V., Savanur, A.P., Nandibewoor, S.T., Chimatadar, S.A.: Ruthenium(III) mediated oxidation of thiamine hydrochloride by cerium(IV) in perchloric acid medium: a kinetic and mechanistic approach. React. Kinet. Mech. Catal. 99, 53–61 (2010)

    CAS  Google Scholar 

  13. Jattinagoudar, L.N., Byadagi, K.S., Nandibewoor, S.T., Chimatadar, S.A.: Kinetics and mechanism of cerium(IV) oxidation of fosfomycin disodium salt: an antibiotic drug in acid perchlorate solutions. Synth. React. Inorg. Met. Org. Nano Met. Chem. 45, 1138–1144 (2015)

    Article  CAS  Google Scholar 

  14. Khan, F., Kushwaha, U., Singh, A.K.: A mechanistic study based on kinetics of the oxidation of diethyl ketone by Ir(III) chloride in aqueous perchloric acid medium when cerium (IV) perchlorate is used as a catalyst. J. Chem. Pharm. Res. 4, 3715–3726 (2012)

    CAS  Google Scholar 

  15. Yadav, M.B., Derva, V., Rani, A.: Kinetics and mechanism of uncatalyzed and silver(I) catalyzed oxidation of lysine by cerium(IV) in acid perchlorate medium. J. Indian Chem. Soc. 86, 600–604 (2009)

    CAS  Google Scholar 

  16. Datt, N., Nagori, R.R., Mehrotra, R.N.: Kinetics and mechanisms of oxidations by metal ions. Part VI. Oxidation of α-hydroxy acids by cerium(IV) in aqueous nitric acid. Can. J. Chem. 64, 19–23 (1986)

    Article  CAS  Google Scholar 

  17. Beeman, R.W., Matsumura, F.: Chlordimeform: a pesticide acting upon amine regulatory mechanisms. Nature 242, 273–274 (1973)

    Article  CAS  Google Scholar 

  18. Aziz, S.A., Knowles, C.O.: Inhibition of monoamine oxidase by the pesticides chlordimeform and related compounds. Nature 242, 417–418 (1973)

    Article  CAS  Google Scholar 

  19. Leung, V.S.K., Chan, T.Y.K., Yeung, V.T.F.: Ami-traz poisoning in humans. Clin. Toxicol. 37, 513–514 (1999)

    CAS  Google Scholar 

  20. Nakayama, A., Sukekawa, M., Eguchi, Y.: Stereo-chemistry and active conformation of a novel insecticide. Acetamiprid Pesticide Sci. 51, 157–164 (1997)

    Article  CAS  Google Scholar 

  21. Fawzy, A., Shaaban, M.R.: Kinetic and mechanistic investigations on the oxidation of N′-heteroaryl unsymmetrical formamidines by permanganate in aqueous alkaline medium. Transit. Met. Chem. 39, 379–386 (2014)

    Article  CAS  Google Scholar 

  22. Hardwick, T.J., Robertson, E.: Ionic species in ceric perchlorate solutions. Can. J. Chem. 29, 818–828 (1951)

    Article  CAS  Google Scholar 

  23. Vogel, A.I.: Text Book of Practical Organic Chemistry Including Quantitative Organic Analysis, 3rd edn, p. 332. ELBS, Longman (1973)

    Google Scholar 

  24. Feigl, F.: Spot Tests in Organic Analysis, p. 195. Elsevier, New York (1975)

    Google Scholar 

  25. Sherill, M.S., King, C.B., Spooner, R.C.: The oxidation potential of cerous-ceric perchlorates. J. Am. Chem. Soc. 65, 170–179 (1943)

    Article  Google Scholar 

  26. Heidt, L.J., Smith, M.E.: Quantum yields of the photochemical reduction of ceric ions by water and evidence for the dimerization of ceric ions. J. Am. Chem. Soc. 70, 2476–2481 (1948)

    Article  CAS  Google Scholar 

  27. King, E.L., Pandow, M.L.: The spectra of cerium(IV) in perchloric acid. Evidence for polymeric species. J. Am. Chem. Soc. 74, 1966–1969 (1952)

    Article  CAS  Google Scholar 

  28. Offner, H.G., Skoog, D.A.: Hydrolysis constant of quadrivalent cerium from spectrometric measurements. Anal. Chem. 38, 1520–1521 (1966)

    Article  CAS  Google Scholar 

  29. Chimatadar, S.A., Madawale, S.V., Nandibewoor, S.T.: Mechanistic study of iodide catalysed oxidation of l-glutamic acid by cerium(IV) in aqueous sulphuric acid medium. Transit. Met. Chem. 32, 634–641 (2007)

    Article  CAS  Google Scholar 

  30. Leal, J.M., Domingo, P.L., Garcla, B., Ibeas, S.: Alkali metal ion catalysis of the oxidation of L-ascorbic acid by hexacyanoferrate(III) in strongly acidic media. J. Chem. Soc. Faraday Trans. 89, 3571–3577 (1993)

    Article  CAS  Google Scholar 

  31. Frost, A.A., Person, R.G.: Kinetics and Mechanism, p. 147. Wiley Eastern, New Delhi (1973)

    Google Scholar 

  32. Amis, E.S.: Solvent Effect on Reaction Rates and Mechanism, p. 28. Academic Press, New York (1966)

    Google Scholar 

  33. Michaelis, L., Menten, M.L.: The kinetics of invertase action. Biochem. Z. 49, 333–369 (1913)

    CAS  Google Scholar 

  34. Fawzy, A.: Kinetics and mechanistic approach to the oxidative behavior of biological anticancer platinum(IV) complex towards l-asparagine in acid medium and the effect of copper(II) catalyst. Int. J. Chem. Kinet. 47, 1–12 (2015)

    Article  CAS  Google Scholar 

  35. Freeman, F., Fuselier, C.O., Armstead, C.R., Dalton, C.E., Davidson, P.A., Karchesfski, E.M., Krochman, D.E., Johnson, M.N., Jones, N.K.: Permanganate ion oxidations. 13. Soluble manganese(IV) species in the oxidation of 2,4(1H,3H)-pyrimidinediones (uracils). J. Am. Chem. Soc. 103, 1154–1159 (1981)

    Article  CAS  Google Scholar 

  36. Hicks, K.W., Toppen, D.L., Linck, R.G.: Inner-sphere electron-transfer reactions of vanadium(II) with azidoamine complexes of cobalt(III). Inorg. Chem. 11, 310–315 (1972)

    Article  CAS  Google Scholar 

  37. Walling, C.: Free Radical in Solutions, p. 38. Academic Press, New York (1957)

    Google Scholar 

  38. Fawzy, A.: Influence of copper(II) catalyst on the oxidation of l-histidine by platinum(IV) in alkaline medium: a kinetic and mechanistic study. Transit. Met. Chem. 39, 567–576 (2014)

    Article  CAS  Google Scholar 

  39. Fawzy, A., Asghar, B.H.: Kinetics and mechanism of uncatalyzed and silver(I)-catalyzed oxidation of l-histidine by hexachloroplatinate(IV) in acid medium. Transit. Met. Chem. 40, 287–295 (2015)

    Article  CAS  Google Scholar 

  40. Shukla, A., Gupta, S., Upadhyay, S.K.: Pd(II) complexes of amino alcohols and their reaction with chloramine-T: a kinetic study. Int. J. Chem. Kinet. 23, 279–288 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fawzy.

Appendices

Appendix 1

Derivation of rate law in the case of perchloric acid.

According to the suggested mechanism and regarding to reaction (5),

$$ {\text{Rate}} = \frac{{ - {\text{d}}[{\text{Ce}}({\text{IV}})]}}{{{\text{d}}t}} = k_{1} [{\text{C}}_{1} ] $$
(25)

Regarding to reactions (3) and (4),

$$ K_{\text{OH}} = \frac{{[{\text{Ce}}({\text{OH}})^{3 + } ][{\text{H}}^{ + } ]}}{{[{\text{Ce}}^{4 + } ]}},\quad [ {\text{Ce}}({\text{OH}})^{3 + } ] { } = \frac{{K_{\text{OH}} [{\text{Ce}}^{4 + } ]}}{{[{\text{H}}^{ + } ]}} $$
(26)

and

$$ K = \frac{{[{{C}}_{1} ] \, }}{{[{\text{Ce}}({\text{OH}})^{3 + } ][{\text{ATF}}]}},\quad [{{C}}_{1} ] = K[{\text{Ce(OH)}}^{3 + } ][{\text{ATF}}] \, = \frac{{K_{\text{OH}} K[{\text{Ce}}^{4 + } ][{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}} $$
(27)

Substituting Eq. 27 into Eq. 25 leads to,

$$ {\text{Rate}} = \frac{{k_{1}^{{}} K_{\text{OH}} K[{\text{Ce}}^{4 + } ][{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}} $$
(28)

The total concentration of ATF is given by:

$$ [{\text{ATF}}]_{\text{T}}\, =\, \left[ {ATF} \right]_{\text{F}} \,+\, \left[ {{{C}}_{1} } \right] $$
(29)

where ‘T’ and ‘F’ stand for total and free concentrations.

Substituting Eq. 27 into Eq. 29 and rearrangement gives,

$$ \left[ {\text{ATF}} \right]_{\text{T}}\, = \, \left[ {\text{ATF}} \right]_{\text{F}}\, + \,\frac{{K_{\text{OH}} K[{\text{Ce}}^{ 4+ } ] [ {\text{ATF]}}}}{{[{\text{H}}^{ + } ]}} $$
(30)
$$ [{\text{ATF}}]_{\text{T}} = [{\text{ATF}}]_{\text{F}} \left( {1 + \frac{{K_{\text{OH}} K[{\text{Ce}}^{4 + } ]}}{{[{\text{H}}^{ + } ]}}} \right) $$
(31)

Therefore,

$$ \left[ {\text{ATF}} \right]_{\text{F}}\, = \,\frac{{[{\text{ATF}}]}}{{1 + \frac{{K_{\text{OH}} K[{\text{Ce}}^{4 + } ]}}{{[{\text{H}}^{ + } ]}}}}\, $$
(32)

In view of low [Ce4+], the second denominator term K OH K[Ce4+]/[H+] in the above equation is neglected. Therefore,

$$ [{\text{ATF}}]_{\text{F}} = [{\text{ATF}}]_{\text{T}} $$
(33)

Also,

$$ [{\text{Ce}}({\text{IV}})]_{\text{T}} = [{\text{Ce}}^{4 + } ]_{\text{F}} + [{\text{Ce}}({\text{OH}})^{3 + } ] \, + [C_{1} ] $$
(34)

Substituting Eqs. 26 and 27 into Eq. 34,

$$ [{\text{Ce}}({\text{IV}})]_{\text{T}} = [{\text{Ce}}^{4 + } ]_{\text{F}} + \frac{{K_{\text{OH}} [{\text{Ce}}^{4 + } ]}}{{[{\text{H}}^{ + } ]}} + \frac{{K_{\text{OH}} K[{\text{Ce}}^{4 + } ][{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}} $$
(35)
$$ [{\text{Ce(IV)}}]_{\text{T}} = [{\text{Ce}}^{4 + } ]_{\text{F}} \left( {1 + \frac{{K_{\text{OH}} }}{{[{\text{H}}^{ + } ]}} + \frac{{K_{\text{OH}} K[{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}}} \right) $$
(36)
$$ [{\text{Ce}}^{4 + } ]_{\text{F}} = \frac{{[{\text{Ce}}({\text{IV}})]_{T} }}{{1 + \frac{{K_{\text{OH}} }}{{[{\text{H}}^{ + } ]}} + \frac{{K_{\text{OH}} K[{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}}}} $$
(37)

Substituting Eqs. 33 and 37 into Eq. 28 (and omitting ‘T’ and ‘F’ subscripts) leads to,

$$ {\text{Rate}} = \frac{{k_{1} K_{\text{OH}} K[{\text{Ce}}({\text{IV}})][{\text{ATF}}]}}{{1 + \frac{{K_{\text{OH}} }}{{[{\text{H}}^{ + } ]}} + \frac{{K_{\text{OH}} K[{\text{ATF}}]}}{{[{\text{H}}^{ + } ]}}}} = \frac{{k_{1} K_{\text{OH}} K[{\text{Ce}}({\text{IV}})][{\text{ATF}}]}}{{[{\text{H}}^{ + } ] + K_{\text{OH}} + K_{\text{OH}} K[{\text{ATF}}]}}\, $$
(38)

Under pseudo-first order condition, the rate-law can be expressed by Eq. 39,

$$ {\text{Rate}} = \frac{{ - {\text{d}}[{\text{Ce}}({\text{IV}})]}}{{{\text{d}}t}} = k_{\text{obs}} [{\text{Ce(IV)}}] $$
(39)

Comparing Eqs. 38 and 39, the following relationship is obtained,

$$ k_{\text{obs}} = \frac{{k_{1} K_{\text{OH}} K[{\text{ATF}}]}}{{[{\text{H}}^{ + } ] + K_{\text{OH}} + K_{\text{OH}} K[{\text{ATF}}]}} $$
(40)

and with rearrangement, the following equations are obtained,

$$ \frac{1}{{k_{\text{obs}} }} = \left( {\frac{{[H^{ + } ] + K_{\text{OH}} }}{{k_{1} K_{\text{OH}} K_{1} }}} \right)\frac{1}{{[{\text{ATF}}]}} + \frac{1}{{k_{1} }} $$
(41)
$$ \frac{1}{{k_{\text{obs}} }} = \left( {\frac{1}{{k_{1} K_{\text{OH}} K_{1} [{\text{ATF}}]}}} \right)[{\text{H}}^{ + } ] + \frac{1}{{k_{1} K_{1} [{\text{ATF}}]}} + \frac{1}{{k_{1} }}. $$
(42)

Appendix 2

Derivation of rate law in case of sulfuric acid.

According to the suggested mechanism and regarding to reaction (16),

$$ {\text{Rate}} = \frac{{ - {\text{d}}[{\text{Ce}}({\text{IV}})]}}{{{\text{d}}t}} = k_{2} [{{C}}_{2} ] $$
(43)

Regarding reactions (14) and (15),

$$ K_{4} = \frac{{[{\text{H}}_{3} {\text{Ce}}({\text{SO}}_{4} )_{4}^{ - } ]}}{{[{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ][{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ]}},\quad [{\text{H}}_{3} {\text{Ce}}({\text{SO}}_{4} )_{4}^{ - } ] = K_{4} [{\text{HCe(SO}}_{4} )_{3}^{ - } ][{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] $$
(44)
$$ K_{5} = \frac{{[{{C}}_{2} ] \, }}{{[{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ][{\text{ATF}}]}},\quad [{{C}}_{2} ] = K_{5} [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ][{\text{ATF}}] $$
(45)

Substituting Eq. 45 into Eq. 43 leads to,

$$ {\text{Rate}} = k_{2} K_{5} [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ][{\text{ATF}}] $$
(46)

The total concentration of ATF is given by:

$$ [{\text{ATF}}]_{\text{T}} = [{\text{ATF}}]_{\text{F}} + [{{C}}_{2} ] $$
(47)

Substituting Eq. 45 into Eq. 47 and rearrangement gives,

$$ [{\text{ATF}}]_{\text{T}} = [{\text{ATF}}]_{\text{F}} + K_{5} [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ][{\text{ATF}}] $$
(48)
$$ [{\text{ATF}}]_{{}} = [{\text{ATF}}]_{\text{F}} (1 + K_{5} [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ]) $$
(49)

Therefore,

$$ \left[ {\text{ATF}} \right]_{\text{F}} \,=\, \frac{{[{\text{ATF}}]_{\text{T}} }}{{1 + K_{5} [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ]}} $$
(50)

In view of low [HCe(SO4) 3 ], the second numerator term in the above equation is neglected. Therefore,

$$ [{\text{ATF}}]_{\text{F}} = [{\text{ATF}}]_{\text{T}} $$
(51)

Also,

$$ [{\text{Ce}}({\text{IV}})]_{\text{T}} = [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ] + [{\text{H}}_{3} {\text{Ce}}({\text{SO}}_{4} )_{4}^{ - } ] + [{{C}}_{2} ] $$
(52)

Substituting Eqs. 44 and 45 into Eq. 52,

$$ [{\text{Ce}}({\text{IV}})]_{\text{T}} = [{\text{HCe(SO}}_{4} )_{3}^{ - } ] + K_{4} [{\text{HCe(SO}}_{4} )_{3}^{ - } ][{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + K_{5} [{\text{HCe(SO}}_{4} )_{3}^{ - } ][{\text{ATF}}] $$
(53)
$$ [{\text{Ce}}({\text{IV}})]_{\text{T}} = [{\text{HCe(SO}}_{4} )_{3}^{ - } ](1 + K_{4} [{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + K_{5} [{\text{ATF}}]) $$
(54)
$$ [{\text{HCe}}({\text{SO}}_{4} )_{3}^{ - } ] = \frac{{[{\text{Ce}}({\text{IV}})]_{\text{T}} }}{{1 + K_{4} [{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + K_{5} [{\text{ATF}}]}} $$
(55)

Substituting Eqs. 51 and 55 into Eq. 46 leads to,

$$ {\text{Rate}} = \frac{{k_{2} K_{5} [{\text{Ce}}({\text{IV}})][{\text{ATF}}]}}{{1 + K_{4} [{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + K_{5} [{\text{ATF}}]}} $$
(56)

Under pseudo-first order condition, the rate-law can be expressed by Eq. 57,

$$ {\text{Rate}} = \frac{{ - {\text{d}}[{\text{Ce}}({\text{IV}})]}}{{{\text{d}}t}} = k_{\text{obs}} [{\text{Ce}}({\text{IV}})] $$
(57)

Comparing Eqs. 56 and 57, the following relationship is obtained,

$$ k_{\text{obs}} = \frac{{k_{2} K_{5} [{\text{ATF}}]}}{{1 + K_{4} [{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + K_{5} [{\text{ATF}}]}} $$
(58)

and with rearrangement, the following equations are obtained:

$$ \frac{1}{{k_{\text{obs}} }} = \left( {\frac{{1 + K_{4} [{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ]}}{{k_{2} K_{5} }}} \right)\frac{1}{{[{\text{ATF}}]}} + \frac{1}{{k_{2} }} $$
(59)
$$ \frac{1}{{k_{\text{obs}} }} = \left( {\frac{{K_{4} }}{{k_{2} K_{5} }}} \right)[{\text{HSO}}_{4}^{ - } ][{\text{H}}^{ + } ] + \frac{1}{{k_{2} K_{5} [{\text{ATF}}]}} + \frac{1}{{k_{2} }}. $$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fawzy, A. Kinetic and Mechanistic Aspects of Oxidation of Aminotriazole Formamidine by Cerium(IV) in Aqueous Perchloric and Sulfuric Acid Solutions: A Comparative Study. J Solution Chem 45, 246–264 (2016). https://doi.org/10.1007/s10953-016-0438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0438-1

Keywords

Navigation