Skip to main content

Advertisement

Log in

Molecular Dynamics Evaluation of Dielectric Constant Mixing Rules for H2O–CO2 at Geologic Conditions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Modeling of mineral reaction equilibria and aqueous-phase speciation of C–O–H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974)

    Article  CAS  Google Scholar 

  2. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II. Debye-Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974)

    Article  CAS  Google Scholar 

  3. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: III. Equation of state for aqueous species at infinite dilution. Am. J. Sci. 276, 97–240 (1976)

    Article  CAS  Google Scholar 

  4. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600 °C. Am. J. Sci. 281, 1241–1516 (1981)

    Article  Google Scholar 

  5. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

    Article  CAS  Google Scholar 

  6. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  7. Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: effective electrostatic radii to 1000 °C and 5 kb. Faraday Soc. Trans. 88, 803–826 (1992)

    Article  CAS  Google Scholar 

  8. Dolejš, D.: Thermodynamics of aqueous species at high temperatures and pressures: equations of state and transport theory. Rev. Miner. Geochem. 76, 35–79 (2013)

    Article  Google Scholar 

  9. Dolejš, D., Manning, C.E.: Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10, 20–40 (2010)

    Google Scholar 

  10. Manning, C.E.: Thermodynamic modeling of fluid–rock interaction at mid-crustal to upper-mantle conditions. Rev. Miner. Geochem. 76, 135–164 (2013)

    Article  CAS  Google Scholar 

  11. Sverjensky, D.A., Harrison, B., Azzolini, D.: Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochim. Cosmochim. Acta 129, 125–145 (2014)

    Article  CAS  Google Scholar 

  12. Facq, S., Daniel, I., Montagnac, G., Cardon, H., Sverjensky, D.A.: In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochim. Cosmochim. Acta 132, 375–390 (2014)

    Article  CAS  Google Scholar 

  13. Kerrick, D.M.: Review of metamorphic mixed volatile (CO2–H2O) equilibria. Am. Mineral. 54, 729–762 (1974)

    Google Scholar 

  14. Connolly, J.A.D., Cesare, B.: C-O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11, 379–388 (1993)

    Article  CAS  Google Scholar 

  15. Huizenga, J.M.: Thermodynamic modeling of C–O–H fluids. Lithos 55, 101–114 (2001)

    Article  CAS  Google Scholar 

  16. Zhang, C., Duan, Z.: A model for C-O–H fluid in the Earth’s mantle. Geochim. Cosmochim. Acta 73, 2089–2102 (2009)

    Article  CAS  Google Scholar 

  17. Walther, J.V.: Ionic association in H2O–CO2 fluids at mid-crustal conditions. J. Metamorph. Geol. 10, 789–797 (1992)

    Article  CAS  Google Scholar 

  18. Akinfiev, N., Zotov, A.: Thermodynamic description of equilibria in mixed fluids (H2O–non-polar gas) over a wide range of temperature (25–700 °C) and pressure (1–5000 bars). Geochim. Cosmochim. Acta 63, 2025–2041 (1999)

    Article  CAS  Google Scholar 

  19. Galvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D.: The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486–498 (2015). doi:10.1016/j.epsl.2015.06.019

    Article  Google Scholar 

  20. International Association for the Properties of Water and Steam: Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and Pressures up to 1000 MPa (1997), http://www.iapws.org/relguide/Dielec.html. Acccessed 10 Oct 2015

  21. Fernández, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H., Williams, R.C.: A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125–1166 (1997)

    Article  Google Scholar 

  22. Pan, D., Spanu, L., Harrison, B., Sverjensky, D.A., Galli, G.: Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc. Natl. Acad. Sci. 110, 6646–6650 (2013)

    Article  CAS  Google Scholar 

  23. Harvey, A.H., Lemmon, E.W.: Method for estimating the dielectric constant of natural gas mixtures. Int. J. Thermophys. 26, 31–46 (2005)

    Article  CAS  Google Scholar 

  24. Looyenga, H.: Dielectric constants of heterogeneous mixtures. Physica 31, 401–406 (1965)

    Article  CAS  Google Scholar 

  25. Looyenga, H.: Dielectric constants of homogeneous mixtures. Mol. Phys. 9, 501–511 (1965)

    Article  CAS  Google Scholar 

  26. Böttcher, C.J.F.: Theory of Electric Polarization, vol. 1, 2nd edn. Elsevier, Amsterdam (1973)

    Google Scholar 

  27. Kirkwood, J.G.: The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939)

    Article  CAS  Google Scholar 

  28. Oster, G.: The dielectric properties of liquid mixtures. J. Am. Chem. Soc. 68, 2036–2041 (1946)

    Article  CAS  Google Scholar 

  29. Wang, P., Anderko, A.: Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilib. 186, 103–122 (2001)

    Article  CAS  Google Scholar 

  30. Orlov, A.G., Smirnov, S.N.: Determining the phase equilibrium parameters of a binary mixture with a polar component from its dielectric constant. Therm. Eng. 41, 650–654 (1994)

    Google Scholar 

  31. Harvey, A.H., Prausnitz, J.M.: Dielectric constants of fluid mixtures over a wide range of temperature and density. J. Solution Chem. 16, 857–869 (1987)

    Article  CAS  Google Scholar 

  32. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  33. Zhang, Z., Duan, Z.: An optimized molecular potential for carbon dioxide. J. Chem. Phys. 122, 214507 (2005)

    Article  Google Scholar 

  34. Pérez-Sánchez, G., González-Salgado, D., Piñiero, M.M., Vega, C.: Fluid–solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: the role of the quadrupole. J. Chem. Phys. 138, 084506 (2013)

    Article  Google Scholar 

  35. Aimoli, C.G., Maginn, E.J., Abreu, C.R.A.: Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations. Fluid Phase Equilib. 368, 80–90 (2014)

    Article  CAS  Google Scholar 

  36. Potoff, J.J., Siepmann, J.I.: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001)

    Article  CAS  Google Scholar 

  37. Duan, Z., Zhang, Z.: Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15 K. Molecular dynamics simulations with ab initio potential surface. Geochim. Cosmochim. Acta 70, 2311–2324 (2006)

    Article  CAS  Google Scholar 

  38. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 2nd edn, p. 179. Academic Press, New York (1986)

    Google Scholar 

  39. Kong, C.L.: Combining rules for intermolecular potential parameters: II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J. Chem. Phys. 59, 2464–2467 (1973)

    Article  CAS  Google Scholar 

  40. Sangster, M.J.L., Dixon, M.: Interionic potentials in alkalai halides and their use in simulations of the molten salts. Adv. Phys. 25, 247–342 (1976)

    Article  CAS  Google Scholar 

  41. Martyna, G.J., Tobias, D.J., Klein, M.L.: Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994)

    Article  CAS  Google Scholar 

  42. Martys, N.S., Mountain, R.D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59, 3733–3736 (1999)

    Article  CAS  Google Scholar 

  43. Evans, D.J., Murad, S.: Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol. Phys. 34, 327–331 (1977)

    Article  CAS  Google Scholar 

  44. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 6th edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  45. Russell, A.J., Spackman, M.A.: Vibrational averaging of electrical properties. Development of a routine theoretical method for polyatomic molecules. Mol. Phys. 84, 1239–1255 (1995)

    Article  CAS  Google Scholar 

  46. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, p. 163. Clarendon Press, Oxford (1987)

    Google Scholar 

  47. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  48. International Association for the Properties of Water and Steam: Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2014), http://www.iapws.org/relguide/IAPWS-95.html. Accessed 10 October 2015

  49. Tödheide, K., Franck, E.U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chem. Neue Folge 37, 387–401 (1963)

    Article  Google Scholar 

  50. Mather, A.E., Franck, E.U.: Phase equilibria in the system carbon dioxide–water at elevated pressures. J. Phys. Chem. 96, 6–8 (1992)

    Article  CAS  Google Scholar 

  51. Holland, R., Powell, R.: Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Miner. Petrol. 145, 492–501 (2003)

    Article  CAS  Google Scholar 

  52. Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)

    Article  CAS  Google Scholar 

  53. Botti, A., Bruni, F., Mancinelli, R., Ricci, M.A., Lo Celso, F., Triolo, R., Ferrante, F., Soper, A.K.: Study of percolation and clustering in supercritical water–CO2 mixtures. J. Chem. Phys. 128, 164504 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Matthieu Galvez for bringing this problem to our attention and for helpful comments during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. Harvey.

Additional information

Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mountain, R.D., Harvey, A.H. Molecular Dynamics Evaluation of Dielectric Constant Mixing Rules for H2O–CO2 at Geologic Conditions. J Solution Chem 44, 2179–2193 (2015). https://doi.org/10.1007/s10953-015-0401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0401-6

Keywords

Navigation