Abstract
The stability of binary and mixed-ligand complexes among trivalent transition metal ions (chromium and iron), glycine peptides (glycylglycine and glycylglycylglycine) and phenolates (ferulic acid and gallic acid) were studied by using pH-potentiometric titration in aqueous solution at 298.15 K and ionic strength of 0.15 mol·dm−3 NaNO3. The complexation model for each system was obtained by processing the potentiometric titration data using the HYPERQUAD2008 program. The stability constant trend of complexes in both systems and the contributions of deprotonated or protonated amide peptides to the stability of the complexes is discussed. The stability of the mixed-ligand complexes relative to their corresponding binary complexes was also investigated by calculating the ∆log10 K parameter of each system. In addition, the Gibbs energies of reaction (Δr G) obtained from the Gaussian modeling program with B3LYP/6-31+G(d) basis set were used to verify the contributing binding sites of the ligands and to predict the structures of the M–L complexes.
Similar content being viewed by others
Abbreviations
- Gp:
-
Glycine peptides
- G:
-
Glycine
- GG:
-
Diglycine
- GGG:
-
Triglycine
- Ph:
-
Phenolates
- FA:
-
Ferulic acid
- GA:
-
Gallic acid
References
Irwin, R.J.: Environmental Contaminants Encyclopedia: Chromium III (Trivalent Chromium) Entry. National Park Service, Water Resources Division, Fort Collins (1997)
Grevat, P.C.: Toxicological Review of Trivalent Chromium. U.S. Environmental Protection Agency, Washington, DC (1998)
Khade, B.C., Deore, P.N., Arbad, B.R.: Composition and stability of chromium metal complexes with drug salbutamol and amino acid. Pharma Sci. Monitor. 2, 73–86 (2011)
Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. A Comprehensive Text, 4th edn. Wiley, New York (1980)
Faa, G., Crisponi, G.: Iron chelating agents in clinical practice. Coord. Chem. Rev. 184, 291–310 (1999)
Papanikolaou, G., Pantopoulos, K.: Iron metabolism and toxicity. Toxicol. App. Pharm. 202, 199–211 (2005)
Muir, A., Hopfer, U.: Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am. J. Physiol. 248, 376–379 (1985)
Nelson, L.S., Lewin, N.A., Howland, M.A., Hoffman, R.S., Goldfrank, L.R., Flomenbaum, N.E.: Goldfrank’s Toxicological Emergencies, 8th edn. McGraw-Hill, New York (2008)
Flora, S.J.S., Pachauri, V.: Chelation in metal intoxication. Int. J. Environ. Res. Public Health 7, 2745–2788 (2010)
Rogan, W.J., Dietrich, K.N., Ware, J.H., Dockery, D.W., Salganik, M., Radcliffe, J., Jones, R.L., Ragan, N.B., Chisolm, J.J.J., Rhoads, G.G.: The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. New Eng. J. Med. 344, 1421–1426 (2001)
May, M.E., Hill, J.O.: Energy content of diets of variable amino acid composition. Am. J. Clin. Nutr. 52, 766–770 (1990)
Sigel, H., Martin, R.B.: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82, 385–426 (1981)
Brown, J.A., Khodr, H., Hider, R.C., Rice-Evans, C.: Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330, 1173–1178 (1998)
Srinivasan, M., Sudheer, A.R., Menon, V.P.: Ferulic acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40, 92–100 (2006)
Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., Bahorun, T.: Phenolics as potential anti-oxidant therapeutic agents: mechanism and actions. Mutat. Res. 579, 200–213 (2005)
Zhou, B., Jia, Z.-S., Chen, Z.-H., Yang, L., Wu, L.-M., Liu, Z.-L.: Synergistic antioxidant effect of green tea polyphenols with α-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. J. Chem. Soc. Perkin Trans. 2, 785–791 (2000)
Zhang, H.-M., Wang, C.-F., Liu, Z.-M., Wang, Y.-Y., Du, S.-S., Shen, S.-M., Wang, G.-L., Liu, P., Deng, Z.-W., Liu, Z.-L.: Antioxidant phenolic compounds from Pu-erh tea. Molecules 17, 14037–14045 (2012)
Mertz, C., Brat, P., Cheynier, V., Guenata, Z.: Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 55, 8616–8624 (2007)
Ohashi, H., Yamamoto, E., Lewis, N.G., Towers, G.H.N.: 5-Hydroxyferulic acid in zea mays and hordeum vugare cell walls. Phytochemistry 26, 1915–1916 (1987)
Teuchy, H., Van-Sumere, C.F.: The metabolism of (1-14C) phenylalanine, (3-14C) cinnamic acid and (2-14C) ferulic acid in the rat. Arch. Int. Physiol. Biochim. 79, 589–618 (1971)
Adam, A., Crespy, V., Levrat-Verny, M.A., Leenhardt, F., Leuillet, M., Demigne, C., Remesy, C.: The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 132, 1962–1968 (2002)
Graf, E.: Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13, 435–448 (1992)
Fujimaki, M., Tsugita, T., Kurata, T.: Fractionation and identification of volatile acids and phenols in the steam distillate of rice bran. Agric. Biol. Chem. 41, 1721–1725 (1977)
Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T.: Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 18, 1526–1530 (1995)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision A.1. 2009. Gaussian, Inc.: Wallingford CT (2009)
Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)
House, J.E.: Inorganic Chemistry, 1st edn. Academic Press/Elsevier (2008)
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998)
Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)
Ramos, J.M., Versiane, O., Felcman, J., Téllez Soto, C.A.: Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta Part A 68, 1370–1378 (2007)
Ramos, J.M., Versiane, O., Felcman, J., Téllez Soto, C.A.: FT-IR vibrational spectrum and DFT: B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate-guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta Part A 72, 182–189 (2009)
Chachkov, D.V., Mikhailov, O.V.: DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion–dithiooxamide–formaldehyde. Russ. J. Inorg. Chem. 54, 1952–1956 (2009)
Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S.: Ab initio molecular orbital study of the complexing behavior of N-ethyl-1-naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A 146, 163–168 (2002)
Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Cu(II), Co(II), and Ni(II)—antioxidative phenolate–glycine peptide systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57, 3443–3451 (2012)
Hernowo, E.: Stability Constant Study: First Transition Metal Ions with Biological Important Ligands; Gallic Acid, l-Norleucine and Nicotinic Acid. LAP LAMBERT Academic Publishing, Germany (2011)
Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic Acid. J. Chem. Eng. Data 56, 532–540 (2011)
Pettit, L.D., Powell, K.J.: A Comprehensive Database of Published Data on Equilibrium Constants of Metal Complexes and Ligands. IUPAC and Academic Software (2001)
Hong, C.-P., Kim, D.-W., Choi, K.-Y., Kim, C.-T., Choi, Y.G.: Stability constants of first-row transition metal and trivalent lanthanide metal ion complexes with macrocyclic tetraazatetraacetic and tetraazatetramethylacetic acids. Bull. Korean Chem. Soc. 20, 297–300 (1999)
Brunetti, A.P., Lim, M.C., Nancollas, G.H.: Thermodynamics of ion association. XVII. Copper complexes of diglycine and triglycine. J. Am. Chem. Soc. 90, 5120–5126 (1968)
Pagenkopf, G.K., Margerum, D.W.: Proton-transfer reaction with copper(II)–triglycine (CuH-2L−). J. Am. Chem. Soc. 90, 501–502 (1968)
Martin, R.B., Chamberlin, M., Edsall, J.T.: The association of nickel(II) ion with peptides. J. Am. Chem. Soc. 82, 495–498 (1960)
Basolo, F., Chen, Y.T., Murmann, R.K.: Steric effects and the stability of complex compounds. IV. The chelating tendencies of c-substituted ethylenediamines with copper(II) and nickel(II) ions. J. Am. Chem. Soc. 76, 956–959 (1954)
Lenarcik, B., Kierzkowska, A.: The Influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4(5)-methylimidazoles. Sep. Sci. Technol. 39, 3485–3508 (2004)
Sigel, H., Prijs, B., Martin, R.B.: Stability of binary and ternary β-alanine containing dipeptide copper(II) complexes. Inorg. Chim. Acta 56, 45–49 (1981)
Turkel, N., Sahin, C.: Stability of binary and ternary copper(II) complexes with 1,10-phenanthroline, 2,2′-bipyridyl and some α-amino acids in aqueous medium. Chem. Pharm. Bull. 57, 694–699 (2009)
Khade, B.C., Deore, P.M., Arbad, B.R.: Mixed-ligand complex formation of copper(II) with some aminoacids and drug dapsone. Int. J. ChemTech. Res 2, 1036–1041 (2010)
Lozano, M.J., Borras, J.: Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(II) and Cd(II) ions. J. Inorg. Biochem. 31, 187–195 (1987)
Khalil, M.M., Fazary, A.E.: Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 135, 1455–1474 (2004)
Acknowledgments
Financial supports by the National Science Council of Taiwan (NSC 102-2221-E-011-079) and National Taiwan University of Science and Technology (101H451403) are greatly appreciated. The authors thank to Prof. Jiang Jyh-Chiang for his valuable suggestions regarding the Gaussian Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Angkawijaya, A.E., Santoso, S.P., Soetaredjo, F.E. et al. Equilibrium Study of Complex Formation Among Trivalent Metals, Glycine Peptides and Phenolates in Aqueous Solution. J Solution Chem 44, 2129–2143 (2015). https://doi.org/10.1007/s10953-015-0397-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-015-0397-y