Skip to main content
Log in

Solution Equilibria of Binary and Ternary Complexes Involving Zinc(II) with 2,6-Diaminopyridine and Various Biologically Relevant Ligands

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The complexing properties of 2,6-diaminopyridine (DAP) with zinc(II) were investigated pH-metrically at 25 °C and at ionic strength of 0.1 mol·dm−3 (NaNO3). Binary and ternary complexes of Zn(II) involving DAP and various biologically relevant ligands containing different functional groups are investigated. The ligands used (L) are amino acids, dicarboxylic acids, amides and DNA unit constituents. The ternary complexes are formed by simultaneous reactions. The results showed the formation of Zn(DAP)(L) complexes with amino acids and dicarboxylic acids. Amides form both Zn(DAP)(L) complexes and the corresponding deprotonated amide species Zn(DAP)(LH−1). The concentration distributions of the various complex species formed in solution were also evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of DAP and the formation constants of Zn(II)–DAP complexes were discussed. The effect of ionic strength on the protonation constants of DAP is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balani, A.M.K.R., Ashoki, R.F.N., Vasanthi, M., Prabui, R., Paulraj, A.: Mixed ligand complexes of nickel(II), copper(II) and zinc(II) with nicotinanilide and thiocyanate. Int. J. Life Sci. Pharm. Res. 3, 67–75 (2013)

    Google Scholar 

  2. Kimura, E., Koike, T., Shionoya, M.: Phosphatases, Lewis acids and vanadium. In: Hill, H.A.O., Sadler, J., Thomson, A.J. (eds.) Metal Sites in Proteins and Models, vol. 89. Springer, Berlin (1997)

    Chapter  Google Scholar 

  3. Koike, T., Inoue, M., Kimura, E., Shiro, M.: Novel properties of cooperative dinuclear zinc(II) ions: the selective recognition of phosphomonoesters and their P-O ester bond cleavage by a new dinuclear zinc(II) cryptate. J. Am. Chem. Soc. 118, 3091–3099 (1996)

    Article  CAS  Google Scholar 

  4. Koike, T., Kajitani, S., Nakamura, I., Kimura, E., Shiro, M.: The catalytic carboxyester hydrolysis by a new zinc(II) complex with an alcohol-pendant cyclen (1-(2-hydroxyethyl)-1,4,7,10-tetraazacyclododecane): a novel model for indirect activation of the serine nucleophile by zinc(II) in zinc enzymes. J. Am. Chem. Soc. 117, 1210–1219 (1995)

    Article  CAS  Google Scholar 

  5. Kimura, E., Koike, T., Shiota, T., Iitaka, Y.: Acid properties of zinc(II) and cadmium(II) in complexation with macrocyclic oxo polyamine ligands. Inorg. Chem. 29, 4621–4629 (1990)

    Article  CAS  Google Scholar 

  6. Ranganathan, S., Jayaraman, N., Roy, R.: Synthesis of “zinc finger” template. Tetrahedron 48, 931–938 (1992)

    Article  CAS  Google Scholar 

  7. Nagaoka, M., Sugiura, Y.: Artificial zinc finger peptides: creation, DNA recognition, and gene regulation. J. Inorg. Biochem. 82, 57–63 (2000)

    Article  CAS  Google Scholar 

  8. Reddy, P.R., Mohan, S.M., Rao, K.S.: DNA hydrolytic cleavage by stable Zn(II) dipeptide complexes. Indian J. Chem. 43A, 2329–2332 (2004)

    CAS  Google Scholar 

  9. Ranganathan, S., Jayaraman, N., Chatterji, D.: DNA recognition by Zn [cysteinyl-His-OMe]2: a minimal zinc finger docking unit. Biopolymers 41, 407–418 (1997)

    Article  CAS  Google Scholar 

  10. Parkin, G.: Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104, 699–767 (2004)

    Article  CAS  Google Scholar 

  11. Gelinsky, M., Vahrenkamp, H.: Zinc complexes of a helical 22-mer peptide with two histidine donors. Eur. J. Inorg. Chem. 9, 2458–2462 (2002)

    Article  Google Scholar 

  12. Boerzel, H., Koeckert, M., Bu, W., Spingler, B., Lippard, S.: Zinc-bound thiolate–disulfide exchange: a strategy for inhibiting metallo-β-lactamases. Inorg. Chem. 42, 1604–1615 (2003)

    Article  CAS  Google Scholar 

  13. Crea, F., De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Thermodynamic parameters for zinc(II) sequestration at different ionic strengths and temperatures. J. Solution Chem. 38, 115–134 (2009)

    Article  CAS  Google Scholar 

  14. Cigala, R.M., Crea, F., De Stefano, C., Lando, G., Manfredi, G., Sammartano, S.: Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. J. Mol. Liq. 165, 143–153 (2012)

    Article  CAS  Google Scholar 

  15. Cigala, R.M., Crea, F., de Stefano, C., Foti, C., Milea, D., Sammartano, S.: Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes. Mon. Chem. 146, 527–540 (2015)

    Article  CAS  Google Scholar 

  16. Williams, R.J.P.: The biochemistry of zinc. Polyhedron 6, 61–69 (1987)

    Article  CAS  Google Scholar 

  17. Berg, J.M.: Potential metal-binding domains in nucleic acid binding proteins. Science 232, 485–487 (1986)

    Article  CAS  Google Scholar 

  18. Johnston, M.: Genetic evidence that zinc is an essential cofactor in the DNA binding domain of GAL4 protein. Nature 328, 353–355 (1987)

    Article  CAS  Google Scholar 

  19. Miller, J., Malachaln, A.D., Klug, A.: Repetitive zinc-binding domains in the protein transcription factor IIIA from xenopus oocytes. EMBO J. 4, 1609–1614 (1985)

    CAS  Google Scholar 

  20. Rabindra, P.R., Radhika, M., Manjula, P.: Synthesis and characterization of mixed ligand complexes of Zn(II) and Co(II) with amino acids: relevance to zinc binding sites in zinc fingers. J. Chem. Sci. 117, 239–246 (2005)

    Article  Google Scholar 

  21. Burger, K.: Biocoordination Chemistry: Coordination Equilibria In Biologically Active Systems. Ellis Horwood, New York (1990)

    Google Scholar 

  22. Rombach, M., Gelinsky, M., Vahrenkamp, H.: Coordination modes of aminoacids to zinc. Inorg. Chim. Acta 334, 25–33 (2002)

    Article  CAS  Google Scholar 

  23. Shoukry, A.A., Al-Mhayawi, S.R.: Synthesis, characterization, biological activity and equilibrium studies of cadmium(II) with 2,6-diaminopyridine and various bio-relevant ligands. Eur. J. Chem. 4, 260–267 (2013)

    Article  CAS  Google Scholar 

  24. Shoukry, A.A.: DNA binding and equilibrium investigation of the interaction of model Pd(II) complex with some selected biorelevant ligands. J. Solution Chem. 43, 746–762 (2014)

    Article  CAS  Google Scholar 

  25. Shoukry, A.A.: Complex formation reactions of promethazine copper(II) and various biologically relevant ligands. Synthesis, equilibrium constants, spectroscopic characterization and biological activity. J. Solution Chem. 40, 796–1818 (2011)

    Article  Google Scholar 

  26. Shoukry, A.A., Hosney, W.M.: Coordination properties of N,O-carboxymethyl chitosan (NOCC). Synthesis and equilibrium studies of some metal ion complexes. Ternary complexes involving Cu(II) with (NOCC) and some biorelevant ligands. Cent. Eur. J. Chem. 10, 59–70 (2012)

    Article  CAS  Google Scholar 

  27. Shoukry, M.M., Shoukry, A.A., Hafez, M.N.: Complex formation reactions between [Pd(piperazine)(H2O)2] and biorelevant ligands: synthesis and equilibrium constants. J. Coord. Chem. 63, 652–664 (2010)

    Article  CAS  Google Scholar 

  28. Shoukry, A.A., Mohamed, M.M., Shoukry, M.M.: Binary and ternary complexes of copper(II) involving N,N,N,N-tetramethylethylenediamine (Me4en) and various biologically relevant ligands. J. Solution Chem. 35, 853–868 (2006)

    Article  CAS  Google Scholar 

  29. Shoukry, A.A.: Complex formation reactions of (2,2-dipyridylamine) copper(II) with various biologically relevant ligands. The kinetics of hydrolysis of amino acid esters. Transit. Met. Chem. 30, 814–827 (2005)

    Article  CAS  Google Scholar 

  30. Welcher, F.J.: The Analytical Uses of Ethylenediamine Tetraacetic Acid. Princeton, Van Nostand (1965)

    Google Scholar 

  31. Vogel, A.E.: Text Book of Quantitative Chemical Analysis, vol. 15, 5th edn, p. 555. Longman, Harlow (1989)

    Google Scholar 

  32. Stark, J.G., Wallace, H.G.: Chemistry Data Book, p. 75. Murray, London (1975)

    Google Scholar 

  33. Van Uiter, G.L., Hass, C.G.: Studies on coördination compounds. I. A method for determining thermodynamic equilibrium constants in mixed solvent. J. Am. Chem. Soc. 75, 451–455 (1953)

    Article  Google Scholar 

  34. Motekaitis, R.J., Martell, A.E., Nelson, D.A.: Formation and stabilities of cobalt(II) chelates of N-benzyl triamine Schiff bases and their dioxygen complexes. Inorg. Chem. 23, 275–283 (1984)

    Article  CAS  Google Scholar 

  35. Serjeant, E.P.: Potentiometry and Potentiometric Titrations. Wiley, New York (1984)

    Google Scholar 

  36. Jameson, R.F., Wilson, M.F.: Thermodynamics of the interactions of catechol with transition metals. Part I. Free energy, enthalpy, and entropy changes for the ionisation of catechol at 25 °C. Comparison of the temperature-coefficient method with direct calorimetry. J. Chem. Soc. Dalton Trans. 23, 2610–2614 (1972)

    Article  Google Scholar 

  37. Hay, R.W., Morris, P.J., Sigel, H.: Metal Ions in Biological Systems, vol. 5. Dekker, New York (1976)

    Google Scholar 

  38. Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)

    Article  CAS  Google Scholar 

  39. Pettit, L.D.: SPECIES, available program supplied to the authors, Academic Software, Personal Communication. University of Leeds, Old Farm, Timbly, Otley, York, LS21 2PW, UK (1993)

  40. El-Qisairia, A.K., Qaseera, H.A., Zaghalb, M.H., Magairehb, S., Saymehb, R., Yousef, Y.A.: Synthesis, characterization and NMR studies of some 2,6-diaminopyridine complexes with palladium(II), rhodium(III) and mercury(II). Jordan J. Chem. 2, 255–264 (2007)

    Google Scholar 

  41. Kozlowski, H., Decock, P.B., Delarulle, J.L., Loucleux, C., Ancian, B.: NMR and CD studies of sulfur chirality center in Pd(II) complexes with S-benzyl-cysteine and glycyl-S-benzyl-L-cysteine. Inorg. Chim. Acta 78, 31–35 (1983)

    Article  CAS  Google Scholar 

  42. Savago, I., Kiss, A., Farkas, E., Sanua, D., Marras, P., Micerain, G.: Potentiometric and spectroscopic studies on the ternary complexes of copper(II) with dipeptides and nucleobases. J. Inorg. Biochem. 65, 103–108 (1997)

    Article  Google Scholar 

  43. Daniele, P.G., Zerbinati, O., Zelano, V., Ostacoli, G.: Thermodynamic and spectroscopic study of copper(II)–glycyl-L-histidylglycine complexes in aqueous solution. J. Chem. Soc. Dalton Trans. 10, 2711–2715 (1991)

    Article  Google Scholar 

  44. Lim, M.C.: Mixed-ligand complexes of Pd(II)-IV. Aqua (diethylenetriamine)palladium and diaqua (ethylenediamine) palladium complexes of uracil, uridine and thymidine. J. Inorg. Nucl. Chem. 43, 221–223 (1981)

    Article  CAS  Google Scholar 

  45. Maskos, K.: The interaction of metal ions with nucleic acids. NMR study of the copper(II) interaction with inosine derivatives. Acta Biochem. Pol. 28, 317–335 (1981)

    CAS  Google Scholar 

  46. Maskos, K.: Spectroscopic studies on the copper(II)-inosine system. J. Inorg. Biochem. Pol. 25, 1–14 (1985)

    Article  CAS  Google Scholar 

  47. El-Sherif, A.A.: Potentiometric determination of the stability constants of trimethyltin(IV) chloride complexes with imino-bis(methylphosphonic acid) in water and dioxane: water mixtures. J. Solution Chem. 41, 392–409 (2012)

    Article  CAS  Google Scholar 

  48. Shoukry, A.A.: Complex formation equilibria of imipenem with some transition metal ions. Ternary complex formation reactions involving Cu(II) with imipenem and various bio-relevant ligands. Eur. J. Chem. 4, 379–387 (2013)

    Article  CAS  Google Scholar 

  49. Bjerrum, J.: Metal-Amine Formation in Aqueous Solution. Haase, Copenhagen (1941)

    Google Scholar 

  50. Shoukry, M.M., Shehata, M.R., Mohamed, M.M.: Binary and ternary complexes of Cd(II) involving triethylenetetramine and selected aminoacids and DNA units. Microchim. Acta 129, 107–113 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azza A. Shoukry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukry, A.A., Al-Mhayawi, S.R. Solution Equilibria of Binary and Ternary Complexes Involving Zinc(II) with 2,6-Diaminopyridine and Various Biologically Relevant Ligands. J Solution Chem 44, 2073–2089 (2015). https://doi.org/10.1007/s10953-015-0395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0395-0

Keywords

Navigation