Abstract
New data have been obtained on the solubility of microlite (CaNa)Ta2O6F in the NaF–H2O system of P–Q type in a wide range of sodium fluoride concentrations (from 0 to 40 wt% NaF). The tantalum concentration in equilibrium with microlite and fluorite in the concentrations range of NaF from 0 to 8 mol·kg−1 H2O (25 wt% NaF) does not exceed 3 × 10−5 mol·kg−1. Sodium fluoride concentrations have been estimated in the immiscible fluids L1 (fluid of moderate density) and L2 (dense fluid) in the NaF–H2O system at 1073 K and 200–230 MPa. The L1 and L2 fluids at p = 200 MPa contain 5 ± 1 and 26 ± 1 wt% NaF, and at p = 230 MPa contain 12 ± 1 and 25 ± 1 wt% NaF. Thermodynamic analysis of the experimental data has shown that the best agreement with experimental microlite solubility in the homogeneous fluid field of NaF–H2O solutions takes place assuming the following aqueous Ta(V) species: \( {\text{HTaO}}_{3}^{\text{o}} \), TaO2F°, \( {\text{TaO(OH)F}}_{ 2}^{\text{o}} \), \( {\text{NaTaO}}_{ 3}^{\text{o}} \), and \( {\text{Na}}_{ 6} {\text{H}}_{ 2} {\text{Ta}}_{ 6} {\text{O}}_{ 1 9}^{\text{o}} \).
Similar content being viewed by others
References
Kotelnikova, Z.A., Kotelnikov, A.R.: NaF-bearing fluids: experimental investigation at 500–800 °C and P = 2000 bar using synthetic fluid inclusions in quartz. Geochem. Intern. 46, 48–61 (2008). doi:10.1134/S0016702908010047
Kotel’nikova, Z.A., Kotel’nikov, A.R.: Experimental study of heterogeneous fluid equilibria in silicate–salt–water systems. Geol. Ore Deposits 52, 154–166 (2010). doi:10.1134/S1075701510020042
Peretyazhko, I.S.: Properties of fluid inclusions with solutions of P–Q type. RMS DPI 208-1-30-0, pp. 124–127 (2008). http://www.minsoc.ru/2008-1-30-0
Peretyazhko, I.S.: Inclusions of magmatic fluids: P-V-T-X properties of aqueous salt solutions of various types and petrological implications. Petrology 17, 178–201 (2009). doi:10.1134/S0869591109020052
Manning, C.E.: The solubility of quartz in H2O in the lower crust and upper mantle. Geochim. Cosmochim. Acta 58, 4831–4839 (1994)
Wood, S.A.: The aqueous geochemistry of zirconium, hafnium, niobium and tantalum. In: Linnen, R.L., Samson, I.M. (eds.) Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC Short Course Notes, vol. 17, pp. 217–268 (2005)
Prasad, S.: Electrometric studies of the formation of niobates as a function of pH. J. Braz. Chem. Soc. 6, 7–12 (1995)
Tytko, K.H.: A bond model for polyoxometalate ions composed MO6 octahedra (MO k polyhedra with k > 4). In: Mingos, D.M.P. (ed.) Bonding and Charge Distribution in Polyoxometalates: A Bond Valence Approach, vol. 93, pp. 67–124. Springer, Berlin (1999)
Chevychelov, VYu., Zaraisky, G.P., Borisovskii, S.E., Borkov, D.A.: Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrology 13, 305–321 (2005)
Redkin, A.F.: Experimental study of joint solubility of pyrochlore and uraninite in fluoride solutions at 800 °C, 2300 bars, and Co–CoO buffer. Exp. Geosci. 18, 134–136 (2012)
Zaraisky, G.P., Korzhinskaya, V., Kotova, N.: Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Miner. Petrol. 99, 287–300 (2010). doi:10.1007/s00710-010-0112-z
Kotova, N.P.: Experimental study of concentration dependence of Ta2O5 and Nb2O5 solubility in the alkaline and carbonate solutions at T = 550 °C, P = 500 bar and low oxygen fugacity (Co–CoO buffer). Electron. J. “Herald of the Earth Sciences Branch”, 3, NZ6055 (2011). doi:10.2205/2011NZ000185
Robie, R.A., Hemingway, B.S., Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, vol. 1452 (1978)
Shvarov, Yu.V., Bastrakov, E.N.: H.Ch: a software package for geochemical equilibrium modelling. User’s Guide: Australian Geological Survey Organisation, Canberra. Record no. 25 (1999)
Shvarov, YuV: HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochem. Intern. 46, 834–839 (2008). doi:10.1134/S0016702908080089
Shvarov, Yu.V.: HCh for Windows, as a tool for solving the problems of non-standard thermodynamic modeling. In: Abstracts IX of the International Conference New Ideas in Earth Sciences. Moscow edn., RGGRU, p. 289 (2009)
Rafalsky, R.P.: Hydrothermal equilibria and processes of minerals formation. Moscow, Nauka, 288 pp. (1973). Free book site: http://www.geokniga.org/books/7820
Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1098 (1974). doi:10.2475/ajs.274.10.1089
Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992). doi:10.1016/0098-3004(92)90029-Q
Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974). doi:10.2475/ajs.274.10.1199
Reisman, A.: Compound repetition in oxide systems. Solid phase in the system Li2O–Ta2O5 and Na2O–Ta2O5. J. Phys. Chem. 66, 15–21 (1962). doi:10.1021/j100807a004
Korzhinskii, M.A.: Chemical behavior of species in the system H2O–HCl–NaCl–CO2 at elevated T and P. Exp. Geosci. 2, 17–20 (1993)
Korzhinsky, M.A.: Experimental evidence for the temperature maximum of NaCl hydrolysis reaction at high T-P conditions. Electron. J. “Herald of the Earth Sciences Branch” 1(22) (2004). http://geo.web.ru/conf/khitariada/1-2004/informbul-1_2004/hydroterm-7e.pdf
Xiong, P., Tan, G., Zhang, W., Xia, A., Ren, H.: Study on photocatalytic activity of NaTaO3 powder synthesized by hydrothermal method. J. Clust. Sci. 24, 515–522 (2013). doi:10.1007/s10876-013-0557-4
Ismailzade, I.G.: An X-ray diffraction study of phase transitions in sodium tantalate. Sov. Phys. Crystallogr. 7, 584–587 (1963)
Ahtee, M., Darlington, C.N.W.: Structures of NaTaO3 by neutron powder diffraction. Acta Cryst. B 36, 1007–1014 (1980)
Kennedy, B.J., Prodjosantoso, A.K., Howard, ChJ: Powder neutron diffraction study of the high temperature phase transitions in NaTaO3. J. Phys.: Condens. Matter 11, 6319–6327 (1999)
Hu, C.-C., Tsai, C.-C., Teng, H.: Structure characterization and tuning of perovskite-like NaTaO3 for applications in photoluminescence and photocatalysis. J. Am. Ceram. Soc. 92, 460–466 (2009). doi:10.1111/j.1551-2916.2008.02869.x
Shi, J., Liu, G., Wang, N., Can, L.: Microwave-assisted hydrothermal synthesis of perovskite NaTaO3 nanocrystals and their photocatalytic properties. J. Mater. Chem. 22, 18808–18813 (2012). doi:10.1039/c2jm33470d
Kanhere, P.D., Tang, Y., Zheng, J., Chen, Z.: Synthesis, photophysical properties, and photocatalytic applications of Bi doped NaTaO3 and Bi doped Na2Ta2O6 nanoparticles. J. Phys. Chem. Solids 74, 1708–1713 (2013). doi:10.1016/j.jpcs.2013.06.013
Shapovalov, Yu.B.: Chemical equilibrium in the system K2O–Al2O3–SiO2–H2O–HF at T = 300–600 °C and P = 1000 bar. Essays Phys.-Chem. Petrol. 15, 160–167 (1988)
Shapovalov, YuB, Setkova, T.V.: Experimental study of mineral equilibria in the system K2O(Li2O)–Al2O3–SiO2–H2O–HF at 300 to 600 °C and 100 MPa with application to natural greisen systems. Am. Miner. 97, 1452–1459 (2012). doi:10.2138/am.2012.3949
Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmoshim. Acta 61, 907–950 (1997)
Redkin, A.F., Stoyanovskaya, F.M., Kotova, N.P.: Investigation of NaF solubility in chloride solutions at 400–500 °C and 200–1000 bar. Doklady Earth Sci. 401A(3), 465–468 (2005)
Acknowledgments
The authors are grateful to V. K. Karandashev (IPTM RAS), A. N. Nekrasov, and O. L. Samokhvalova (IEM RAS) for their help in the experimental research. An earlier version of this manuscript was reviewed by Dr. Z. A. Kotelnikova (IGEM RAS) and an anonymous referee, who provided comments that have helped to noticeably improve the quality of this paper. The work is supported by Russian Fund of Basic Research Grants 14-05-00145, 15-05-03393, 14-05-00424, 14-05-91750-AF, and the program DES RAS No. 2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Redkin, A.F., Kotova, N.P. & Shapovalov, Y.B. Liquid Immiscibility in the System NaF–H2O at 1073 K and 200–230 MPa and Its Effect on Microlite Solubility. J Solution Chem 44, 2008–2026 (2015). https://doi.org/10.1007/s10953-015-0394-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-015-0394-1