Skip to main content

Advertisement

Log in

Combined Raman Scattering and X-ray Diffraction Study of Phase Transition of the Ionic Liquid [BMIM][TFSI] Under High Pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In situ solidification of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]) from melt has been investigated by using a diamond anvil cell under pressures up to about 6.0 GPa at room temperature. The results indicate that non-monotonic pressure induced Raman shifts and variation of the full width at half-maximum are suggestive of a phase transition at about 1.8 GPa upon compression, which was further confirmed to be a phase transition from liquid to a superpressurized glass by line broadening measurements of the sharp R 1 ruby fluorescence line and synchrotron X-ray diffraction measurements. The conformational changes of C 1 and C 2 conformers of the [TFSI] anion under high pressure are discussed; the C 2 conformers are predominant under high pressures. In addition, the Raman spectra of [BMIM][TFSI] under different conditions are compared in detail. The results show that the structure of the glassy state at low temperature is different from that of the high pressure state, while the glassy state is mainly composed of C 2 anion conformers, which is similar to the high pressure state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  2. Huddleston, J.G., Rogers, R.D.: Room temperature ionic liquids as novel media for clean liquid–liquid extraction. Chem. Commun. 16, 1765–1766 (1998)

    Article  Google Scholar 

  3. Buzzeo, M.C., Evans, R.G., Compton, R.G.: Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem. Phys. Chem. 5, 1106–1120 (2004)

    CAS  Google Scholar 

  4. Rantwijk, F.V., Madeira, L.R., Sheldon, R.A.: Biocatalytic transformations in ionic liquids. Trends in Biotechnol. 21, 131–138 (2003)

    Article  Google Scholar 

  5. Armstrong, D.W., Zhang, L.K., He, L., Gross, M.L.: Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 73, 3679–3686 (2001)

    Article  CAS  Google Scholar 

  6. Wang, P., Zakeeruddin, S.M., Moser, J.E., Gratzel, M.: A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B 107, 13280–13285 (2003)

    Article  CAS  Google Scholar 

  7. Itoh, H., Naka, K., Chujo, Y.: Synthesis of gold nanoparticles modified with ionic liquid based on the Iimidazolium cation. J. Am. Chem. Soc. 126, 3026–3027 (2004)

    Article  CAS  Google Scholar 

  8. Buzzeo, M.C., Hardacre, C., Compton, R.G.: Use of room temperature ionic liquids in gas sensor design. Anal. Chem. 76, 4583–4588 (2004)

    Article  CAS  Google Scholar 

  9. Russina, O., Fazio, B., Schmidt, C., Triolo, A.: Structural organization and phase behaviour of 1-butyl-3-methylimidazolium hexafluorophosphate: an high pressure Raman spectroscopy study. Phys. Chem. Chem. Phys. 13, 12067–12074 (2011)

    Article  CAS  Google Scholar 

  10. Saouane, S., Norman, S.E., Hardacre, C., Fabbiani, F.P.A.: Pinning down the solid-state polymorphism of the ionic liquid [BMIM][PF6]. Chem. Sci. 4, 1270–1280 (2013)

    Article  CAS  Google Scholar 

  11. Imai, Y., Takekiyo, T., Abe, H., Yoshimura, Y.: Pressure- and temperature-induced Raman spectral changes of 1-butyl-3-methylimidazolium tetrafluoroborate. High Press Res. 31, 53–57 (2011)

    Article  CAS  Google Scholar 

  12. Yoshimura, Y., Takekiyo, T., Imai, Y., Abe, H.: Pressure-induced spectral changes of room-temperature ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethylsulfonyl)imide, [DEME][TFSI]. J. Phys. Chem. C 116, 2097–2101 (2012)

    Article  CAS  Google Scholar 

  13. Su, L., Li, L.B., Hu, Y., Yuan, C.S., Shao, C.G., Hong, S.M.: Phase transition of [CnMIM][PF6] under high pressure up to 1.0 GPa. J. Chem. Phys. 130, 184503–184504 (2009)

    Article  Google Scholar 

  14. Su, L., Li, M., Zhu, X., Wang, Z., Chen, Z.P., Li, F.F., Zhou, Q., Hong, S.M.: In situ crystallization of low-melting ionic liquid [BMIM] [PF6] under high pressure up to 2 GPa. J. Phys. Chem. B 114, 5061–5065 (2010)

    Article  CAS  Google Scholar 

  15. Su, L., Zhu, X., Wang, Z., Cheng, X.R., Wang, Y.Q., Yuan, C.S., Chen, Z.P., Ma, C.L., Li, F.F., Zhou, Q., Cui, Q.L.: In situ observation of multiple phase transitions in Ll-melting ionic liquid [BMIM][BF4] under high pressure up to 30 GPa. J. Phys. Chem. B 116, 2216–2222 (2012)

    Article  CAS  Google Scholar 

  16. Li, H.N., Zhang, Y.Q., Zhu, X., Cheng, X.R., Shao, C.G., Wu, J., Li, J.Y., Ren, Y.F., Wang, Z., Wang, Y.Q., Yuan, C.S., Su, L.: In situ solidification of ionic liquid [EMIM][EtOSO3] from melt under high pressure. High Press Res. 4, 751–759 (2013)

    Article  Google Scholar 

  17. Shigemi, M., Takekiyo, T., Abe, H., Hamaya, N., Yoshimura, Y.: Pressure-induced solidification of 1-butyl-3-methylimidazolium tetrafluoroborate. J. Solution Chem. 43, 1614–1624 (2014)

    Article  CAS  Google Scholar 

  18. Mudring, A.V.: Solidification of ionic liquids: theory and techniques. Aust. J. Chem. 63, 544–564 (2010)

    Article  CAS  Google Scholar 

  19. Mao, H.K., Bell, P.M., Shaner, J.W., Steinberg, D.J.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. Appl. Phys. 49, 3276–3283 (1978)

    Article  CAS  Google Scholar 

  20. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D.: Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res. 14, 235–248 (1996)

    Article  Google Scholar 

  21. Berg, R.W., Deetlefs, M., Seddon, K.R., Shim, I., Thompson, J.M.: Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J. Phys. Chem. B 109, 19018–19025 (2005)

    Article  CAS  Google Scholar 

  22. Castriota, M., Caruso, T., Agostino, R.G., Cazzanelli, E., Henderson, W.A., Passerin, S.: Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide and its mixture with LiN(SO2CF3)2. J. Phys. Chem. A 109, 92–96 (2005)

    Article  CAS  Google Scholar 

  23. Kiefer, J., Fries, J., Leipertz, A.: Experimental vibrational study of imidazolium-based ionic liquids: raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Applied Spectrosc. 12, 1306–1311 (2007)

    Article  Google Scholar 

  24. Lassegues, J.C., Grondin, J., Holomb, R., Johansson, P.: Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl) imide ionic liquid. J. Raman Spectrosc. 38, 551–558 (2007)

    Article  CAS  Google Scholar 

  25. Chang, H.C., Jiang, J.C., Su, J.C., Chang, C.Y., Lin, S.H.: Evidence of rotational isomerism in 1-butyl-3-methylimidazolium halides: a combined high pressure infrared and Raman spectroscopic study. J. Phys. Chem. A 111, 9201–9206 (2007)

    Article  CAS  Google Scholar 

  26. Piermarini, G.J., Block, S., Barnett, J.D.: Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys. 44, 5377–5382 (1973)

    Article  CAS  Google Scholar 

  27. Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)

    Article  CAS  Google Scholar 

  28. Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 110, 8179–8183 (2006)

    Article  CAS  Google Scholar 

  29. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  30. Rivera, C.A., Kaminski, K., Leon, C., Paluch, M.: Ion dynamics under pressure in an ionic liquid. J. Phys. Chem. B 112, 3110–3114 (2008)

    Article  Google Scholar 

  31. Scott, T.H.: Ionic Liquids-Classes. Properties, InTech, Rijeka, Croatia (2011)

    Google Scholar 

  32. Takatsugu, E., Sabyasachi, S.: Ionic dynamics in [C4mim]NTf2 in the glassy and liquid states: results from 13C and 1H NMR spectroscopy. J. Phys. Chem. B 118, 14888–14898 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Nos. 21273206 and 31201377), as well as Key Research Project of Higher Education of Henan Province (No. 15A140016 and No. 2010GGJS-110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhu, X., Li, H. et al. Combined Raman Scattering and X-ray Diffraction Study of Phase Transition of the Ionic Liquid [BMIM][TFSI] Under High Pressure. J Solution Chem 44, 2106–2116 (2015). https://doi.org/10.1007/s10953-015-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0393-2

Keywords

Navigation