Skip to main content
Log in

Computer Simulation Study of the Interactions Between Gold Clusters and Glutamate in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study is to discuss the quantitative simulation results of Au n clusters (n = 3, 4) and glutamate–Au n complexes in water. To attain this goal, each species was first modeled by quantum mechanical calculations, and subsequently their properties in aqueous solution were studied by applying Monte Carlo simulations. The results of gas phase calculations showed that the glutamate–Au4 complex has a relatively higher interaction energy than do the other complexes. Solvation of glutamate–Au n complexes was investigated in terms of solvation Gibbs energy and, in continuation, compared with that of pure Au n clusters. The computations showed that complex formation enhances the solubility in water. Of the two glutamate–Au n complexes, glutamate–Au4 has the larger solubility in water. The resulting complexation Gibbs energies were also used to study the stability of related structures, indicating glutamate–Au3 is the most stable complex in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pyykkö, P.: Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004)

    Article  Google Scholar 

  2. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, N.A.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990)

    Article  CAS  Google Scholar 

  3. Yang, Y., Chen, S.: Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett. 3(1), 75–79 (2003)

    Article  CAS  Google Scholar 

  4. Pyykkö, P.: Theoretical chemistry of gold. II. Inorg Chim Acta. 358, 4113–4130 (2005)

    Article  Google Scholar 

  5. Cleveland, C.L., Landman, U., Schaaff, T.G., Shafigullin, M.N., Stephens, P.W., Whetten, R.L.: Structural evolution of smaller gold nanocristal: the truncated decahedral motis. Phys. Rev. Lett. 79, 1873–1876 (1997)

    Article  CAS  Google Scholar 

  6. Sanchez, A., Abbet, S., Heiz, U., Schneider, W.D., Hakkinen, H., Barnett, R.N., Landman, U.: When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999)

    Article  CAS  Google Scholar 

  7. Hakkinen, H., Landman, U.: Gas-phase catalytic oxidation of CO by Au2 . J. Am. Chem. Soc. 123, 9704–9705 (2001)

    Article  CAS  Google Scholar 

  8. Burda, C., Chen, X.B., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Article  CAS  Google Scholar 

  9. Fernandez, C.A., Wai, C.W.: A simple and rapid method of making 2D and 3D arrays of gold nanoparticles. J. Nanosci. Nanotechnol. 6, 669–674 (2006)

    Article  CAS  Google Scholar 

  10. Yu, J.S., Kim, M., Kim, S., Ha, D.H., Chung, B.H., Chung, S.J., Yu, J.S.: Characteristics of localized surface plasmon resonance of nanostructured Au patterns for biosensing. J. Nanosci. Nanotechnol. 8, 4548–4552 (2008)

    Article  CAS  Google Scholar 

  11. Wang, J.: From DNA biosensors to gene chips. Nucleic Acids Res. 28, 3011–3016 (2000)

    Article  CAS  Google Scholar 

  12. Kim, H.J., Choi, S.H., Oh, S.H., Woo, J.C., Kim, K.: Horseradish peroxidase immobilized on poly(thiophene-2-aminophenol-3-thiopheneacetic acid) film electrode with Au nanoparticle-fabrication and evaluation as hydrogen peroxide sensor. J. Nanosci. Nanotechnol. 8, 4962–4967 (2008)

    Article  CAS  Google Scholar 

  13. Mitchell, G.P., Mirkin, C.A., Letsinger, R.L.: Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999)

    Article  CAS  Google Scholar 

  14. Cao, Y.W.C., Jin, R., Mirkin, C.A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)

    Article  CAS  Google Scholar 

  15. Cavalleri, O., Gonella, G., Terreni, S., Vignolo, M., Floreano, L., Morgante, A., Canepa, M., Rolandi, R.: High resolution X-ray photoelectron spectroscopy of l-cysteine self-assembled films. Phys. Chem. Chem. Phys. 6, 4042–4046 (2004)

    Article  CAS  Google Scholar 

  16. Duan, S., Wu, D.Y., Xu, X., Luo, Y., Tian, Z.Q.: Structures of water molecules adsorbed on a gold electrode under negative potentials. J. Phys. Chem. C 114, 4051–4056 (2010)

    Article  CAS  Google Scholar 

  17. Lazarus, L.L., Yang, A.S.J., Chu, S., Brutchey, R.L., Malmstadt, N.: Flow-focused synthesis of monodisperse gold nanoparticles using ionic liquids on a microfluidic platform. Lab Chip 10, 3377–3379 (2010)

    Article  CAS  Google Scholar 

  18. Pissuwan, D., Niidome, T., Cortie, M.B.: The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controll. Release 149, 65–71 (2011)

    Article  CAS  Google Scholar 

  19. Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., Baxter, S.C.: Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008)

    Article  CAS  Google Scholar 

  20. El-Sayed, I.H., Huang, X.H., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005)

    Article  CAS  Google Scholar 

  21. Jain, P.K., Huang, X.H., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  CAS  Google Scholar 

  22. Nath, N., Chilkoti, A.: A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74, 504–509 (2002)

    Article  CAS  Google Scholar 

  23. Aslan, K., Zhang, J., Lakowicz, J.R., Geddes, C.D.: Saccharide sensing using gold and silver nanoparticles—a review. J. Fluores. 14, 391–400 (2004)

    Article  CAS  Google Scholar 

  24. Liu, J., Lu, Y.: Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J. Fluoresc. 14, 343–354 (2004)

    Article  CAS  Google Scholar 

  25. Park, S.J., Lazarides, A.A., Mirkin, C.A., Letsinger, R.L.: Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Ed. 40, 2909–2912 (2001)

    Article  CAS  Google Scholar 

  26. Katz, E., Willner, I.: Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Agnew. Chem. Int. Ed. 43, 6042–6108 (2004)

    Article  CAS  Google Scholar 

  27. López-Ramírez, M.R., García-Ramos, J.V., Otero, J.C., Castro, J.L., Sánchez-Cortés, S.: Tuning charge-transfer processes in the surface-enhanced Raman scattering of l-α-phenylglycine adsorbed on silver nanostructures. Chem. Phys. Lett. 446, 380–384 (2007)

    Article  Google Scholar 

  28. Kumar, A., Mishra, P.C., Suhai, S.: Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC–Au n and AT–Au n (n = 4, 8) complexes. J. Phys. Chem. A 110, 7719–7727 (2006)

    Article  CAS  Google Scholar 

  29. Shukla, M.K., Dubey, M., Zakar, E., Leszczynski, J.: DFT investigation of the interaction of gold nanoclusters with nucleic acid base guanine and the Watson–Crick guanine–cytosine base pair. J. Phys. Chem. C 113, 3960–3966 (2009)

    Article  CAS  Google Scholar 

  30. Vyas, N., Ojha, A.K.: Interaction of gold nanoclusters of different size with adenine: a density functional theory study of neutral, anionic and cationic forms of [adenine + (Au)n = 3,6,9,12] complexes. Comput. Theor. Chem. 984, 93–101 (2012)

    Article  CAS  Google Scholar 

  31. Zhang, L., Ren, T., Zhou, L., Tian, J., Li, X.: DFT investigation of the intermolecular interactions of a thieno-separated tricyclic guanine analog with gold nanoclusters. Comput. Theor. Chem. 1019, 1–10 (2013)

    Article  CAS  Google Scholar 

  32. Wang, Y., Chi, Q.J., Hush, N.S., Reimers, J.R., Zhang, J.D., Ulstrup, J.: Scanning tunneling microscopic observation of adatom-mediated motifs on gold–thiol self-assembled monolayers at high coverage. J. Phys. Chem. C 113, 19601–19608 (2009)

    Article  CAS  Google Scholar 

  33. Canepa, M., Lavagnino, L., Pasquali, L., Moroni, R., Bisio, F., De Renzi, V., Terreni, S., Mattera, L.: Growth dynamics of l-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study. J. Phys. Condens. Matter 21, 264005–264012 (2009)

    Article  CAS  Google Scholar 

  34. Mihailescu, G.H., Olenic, L., Pruneanu, S., Bratu, I., Kacso, I.: The effect of pH on aminoacids binding to gold nanoparticles. J. Optoelect. Adv. Mater. 9, 756–759 (2007)

    CAS  Google Scholar 

  35. Xie, H.J., Lei, Q.F., Fang, W.J.: Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. J. Mol. Model. 18, 645–652 (2012)

    Article  CAS  Google Scholar 

  36. Höffling, B., Ortmann, F., Hannewald, K., Bechstedt, F.: Single cysteine adsorption on Au(110): a first-principles study. Phys. Rev. B 81, 045407–045419 (2010)

    Article  Google Scholar 

  37. Mateo-Marti, E., Rogero, C., Gonzalez, C., Sobrado, J.M., de Andres, P.L., Martin-Gago, J.A.: Interplay between fast diffusion and molecular interaction in the formation of self-assembled nanostructures of S-cysteine on Au (111). Langmuir 26, 4113–4118 (2010)

    Article  CAS  Google Scholar 

  38. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  39. Xu, Y.: Advances in the soy sauce industry in China. J. Ferment. Bioeng. 70, 434–439 (1990)

    Article  Google Scholar 

  40. Ueki, T., Noda, Y., Teramoto, Y., Ohba, R., Ueda, S.: Practical soy sauce production using a mixed Koji-making system. J. Ferment. Bioeng. 78, 262–264 (1994)

    Article  CAS  Google Scholar 

  41. Beautler, H.O.: Methods of Enzymatic Analysis, vol. VII, 3rd edn. Verlag Chemie, Weinheim (1985)

    Google Scholar 

  42. Oliveira, M.I.P., Pimentel, M.C., Montenegro, M.C.B.S.M., Araujo, A.N., Pimentel, M.F., Silva, V.L.: l-Glutamate determination in food samples by flow-injection analysis. Anal. Chim. Acta 448, 207–213 (2001)

    Article  CAS  Google Scholar 

  43. Pauliukaite, R., Zhylyak, G., Citterio, D., Keller, U.E.S.: l-Glutamate biosensor for estimation of the taste of tomato specimens. Anal. Bioanal. Chem. 386, 220–227 (2006)

    Article  CAS  Google Scholar 

  44. Kurita, R., Tabei, H., Hayashi, K., Horiuchi, T., Torimitsu, K., Niwa, O.: Improvement in signal reliability when measuring l-glutamate released from culture cells using multi-channels microfabricated sensors. Anal. Chim. Acta 441, 165–174 (2001)

    Article  CAS  Google Scholar 

  45. Hakkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H., Wang, L.: On the electronic and atomic structures of small Au N-(N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 107, 6168–6175 (2003)

    Article  Google Scholar 

  46. Xiao, L., Wang, L.: From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect. Chem. Phys. Lett. 392, 452–455 (2004)

    Article  CAS  Google Scholar 

  47. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Article  Google Scholar 

  48. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  49. Becke, A.D.: A new inhomogeneity parameter in density functional theory. J. Chem. Phys. 109, 2092–2098 (1998)

    Article  CAS  Google Scholar 

  50. Lee, C., Yang, W., Parr, R.G.: Development of the Colle Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  51. Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991)

    Article  CAS  Google Scholar 

  52. Bennett, A., Tensfeldt, T.G., Shirley, W.A., Mantzaris, J.: A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988)

    Article  Google Scholar 

  53. Dunning Jr, T.H., Hay, P.J.: Modern Theoretical Chemistry, pp. 1–28. Plenum, New York (1976)

    Google Scholar 

  54. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jense, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  55. Ketabi, S., Hashemi Haeri, H., Hashemianzadeh, S.M.: Solvation free energies of glutamate and its metal complexes: a computer simulation study. J. Mol. Model. 17, 889–898 (2011)

    Article  CAS  Google Scholar 

  56. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  57. Jorgensen, W.L.: Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340 (1981)

    Article  CAS  Google Scholar 

  58. Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Hydration of amide. J. Am. Chem. Soc. 107, 1489–1496 (1985)

    Article  CAS  Google Scholar 

  59. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  60. Rizzo, R.C., Jorgensen, W.L.: OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 121, 4827–4836 (1999)

    Article  CAS  Google Scholar 

  61. Watkins, E.K., Jorgensen, W.L.: Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A 105, 4118–4125 (2001)

    Article  CAS  Google Scholar 

  62. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  CAS  Google Scholar 

  63. Kollman, P.A.: Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2417 (1993)

    Article  CAS  Google Scholar 

  64. Beveridge, D.L., Di Capua, F.M.: Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18, 431–492 (1989)

    Article  CAS  Google Scholar 

  65. Metropolis, N., Rosenbulth, A.W., Rosenbulth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1093 (1953)

    Article  CAS  Google Scholar 

  66. Xiao, L., Tollberg, B., Hu, X., Wang, L.: Structural study of gold clusters. J. Chem. Phys. 124, 114309 (2006)

    Article  Google Scholar 

  67. Cordero, B., Gómez, V., Platero-Prats, A., Revés, M., Echeverría, J., Cremades, E., Barragán, F., Alvarez, S.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)

    Article  Google Scholar 

  68. Redmill, P.S., Capps, S.L., Cummings, P.T., McCabe, C.: A molecular dynamics study of the Gibbs free energy of salvation of fullerene particles in octanol and water. Carbon 47, 2865–2874 (2009)

    Article  CAS  Google Scholar 

  69. Nanok, T., Artrith, N., Pantu, P., Bopp, P.A., Limtrakul, J.: Structure and dynamics of water confined in single-wall nanotubes. J. Phys. Chem. A 113, 2103–2108 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Ketabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabi, S., Esteshfai, T. Computer Simulation Study of the Interactions Between Gold Clusters and Glutamate in Aqueous Solution. J Solution Chem 44, 2027–2041 (2015). https://doi.org/10.1007/s10953-015-0387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0387-0

Keywords

Navigation