Abstract
The objective of this study is to discuss the quantitative simulation results of Au n clusters (n = 3, 4) and glutamate–Au n complexes in water. To attain this goal, each species was first modeled by quantum mechanical calculations, and subsequently their properties in aqueous solution were studied by applying Monte Carlo simulations. The results of gas phase calculations showed that the glutamate–Au4 complex has a relatively higher interaction energy than do the other complexes. Solvation of glutamate–Au n complexes was investigated in terms of solvation Gibbs energy and, in continuation, compared with that of pure Au n clusters. The computations showed that complex formation enhances the solubility in water. Of the two glutamate–Au n complexes, glutamate–Au4 has the larger solubility in water. The resulting complexation Gibbs energies were also used to study the stability of related structures, indicating glutamate–Au3 is the most stable complex in aqueous solution.
Similar content being viewed by others
References
Pyykkö, P.: Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004)
Landman, U., Luedtke, W.D., Burnham, N.A., Colton, N.A.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990)
Yang, Y., Chen, S.: Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett. 3(1), 75–79 (2003)
Pyykkö, P.: Theoretical chemistry of gold. II. Inorg Chim Acta. 358, 4113–4130 (2005)
Cleveland, C.L., Landman, U., Schaaff, T.G., Shafigullin, M.N., Stephens, P.W., Whetten, R.L.: Structural evolution of smaller gold nanocristal: the truncated decahedral motis. Phys. Rev. Lett. 79, 1873–1876 (1997)
Sanchez, A., Abbet, S., Heiz, U., Schneider, W.D., Hakkinen, H., Barnett, R.N., Landman, U.: When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999)
Hakkinen, H., Landman, U.: Gas-phase catalytic oxidation of CO by Au2 −. J. Am. Chem. Soc. 123, 9704–9705 (2001)
Burda, C., Chen, X.B., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)
Fernandez, C.A., Wai, C.W.: A simple and rapid method of making 2D and 3D arrays of gold nanoparticles. J. Nanosci. Nanotechnol. 6, 669–674 (2006)
Yu, J.S., Kim, M., Kim, S., Ha, D.H., Chung, B.H., Chung, S.J., Yu, J.S.: Characteristics of localized surface plasmon resonance of nanostructured Au patterns for biosensing. J. Nanosci. Nanotechnol. 8, 4548–4552 (2008)
Wang, J.: From DNA biosensors to gene chips. Nucleic Acids Res. 28, 3011–3016 (2000)
Kim, H.J., Choi, S.H., Oh, S.H., Woo, J.C., Kim, K.: Horseradish peroxidase immobilized on poly(thiophene-2-aminophenol-3-thiopheneacetic acid) film electrode with Au nanoparticle-fabrication and evaluation as hydrogen peroxide sensor. J. Nanosci. Nanotechnol. 8, 4962–4967 (2008)
Mitchell, G.P., Mirkin, C.A., Letsinger, R.L.: Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999)
Cao, Y.W.C., Jin, R., Mirkin, C.A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)
Cavalleri, O., Gonella, G., Terreni, S., Vignolo, M., Floreano, L., Morgante, A., Canepa, M., Rolandi, R.: High resolution X-ray photoelectron spectroscopy of l-cysteine self-assembled films. Phys. Chem. Chem. Phys. 6, 4042–4046 (2004)
Duan, S., Wu, D.Y., Xu, X., Luo, Y., Tian, Z.Q.: Structures of water molecules adsorbed on a gold electrode under negative potentials. J. Phys. Chem. C 114, 4051–4056 (2010)
Lazarus, L.L., Yang, A.S.J., Chu, S., Brutchey, R.L., Malmstadt, N.: Flow-focused synthesis of monodisperse gold nanoparticles using ionic liquids on a microfluidic platform. Lab Chip 10, 3377–3379 (2010)
Pissuwan, D., Niidome, T., Cortie, M.B.: The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controll. Release 149, 65–71 (2011)
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., Baxter, S.C.: Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008)
El-Sayed, I.H., Huang, X.H., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005)
Jain, P.K., Huang, X.H., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)
Nath, N., Chilkoti, A.: A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74, 504–509 (2002)
Aslan, K., Zhang, J., Lakowicz, J.R., Geddes, C.D.: Saccharide sensing using gold and silver nanoparticles—a review. J. Fluores. 14, 391–400 (2004)
Liu, J., Lu, Y.: Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J. Fluoresc. 14, 343–354 (2004)
Park, S.J., Lazarides, A.A., Mirkin, C.A., Letsinger, R.L.: Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Ed. 40, 2909–2912 (2001)
Katz, E., Willner, I.: Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Agnew. Chem. Int. Ed. 43, 6042–6108 (2004)
López-Ramírez, M.R., García-Ramos, J.V., Otero, J.C., Castro, J.L., Sánchez-Cortés, S.: Tuning charge-transfer processes in the surface-enhanced Raman scattering of l-α-phenylglycine adsorbed on silver nanostructures. Chem. Phys. Lett. 446, 380–384 (2007)
Kumar, A., Mishra, P.C., Suhai, S.: Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC–Au n and AT–Au n (n = 4, 8) complexes. J. Phys. Chem. A 110, 7719–7727 (2006)
Shukla, M.K., Dubey, M., Zakar, E., Leszczynski, J.: DFT investigation of the interaction of gold nanoclusters with nucleic acid base guanine and the Watson–Crick guanine–cytosine base pair. J. Phys. Chem. C 113, 3960–3966 (2009)
Vyas, N., Ojha, A.K.: Interaction of gold nanoclusters of different size with adenine: a density functional theory study of neutral, anionic and cationic forms of [adenine + (Au)n = 3,6,9,12] complexes. Comput. Theor. Chem. 984, 93–101 (2012)
Zhang, L., Ren, T., Zhou, L., Tian, J., Li, X.: DFT investigation of the intermolecular interactions of a thieno-separated tricyclic guanine analog with gold nanoclusters. Comput. Theor. Chem. 1019, 1–10 (2013)
Wang, Y., Chi, Q.J., Hush, N.S., Reimers, J.R., Zhang, J.D., Ulstrup, J.: Scanning tunneling microscopic observation of adatom-mediated motifs on gold–thiol self-assembled monolayers at high coverage. J. Phys. Chem. C 113, 19601–19608 (2009)
Canepa, M., Lavagnino, L., Pasquali, L., Moroni, R., Bisio, F., De Renzi, V., Terreni, S., Mattera, L.: Growth dynamics of l-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study. J. Phys. Condens. Matter 21, 264005–264012 (2009)
Mihailescu, G.H., Olenic, L., Pruneanu, S., Bratu, I., Kacso, I.: The effect of pH on aminoacids binding to gold nanoparticles. J. Optoelect. Adv. Mater. 9, 756–759 (2007)
Xie, H.J., Lei, Q.F., Fang, W.J.: Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. J. Mol. Model. 18, 645–652 (2012)
Höffling, B., Ortmann, F., Hannewald, K., Bechstedt, F.: Single cysteine adsorption on Au(110): a first-principles study. Phys. Rev. B 81, 045407–045419 (2010)
Mateo-Marti, E., Rogero, C., Gonzalez, C., Sobrado, J.M., de Andres, P.L., Martin-Gago, J.A.: Interplay between fast diffusion and molecular interaction in the formation of self-assembled nanostructures of S-cysteine on Au (111). Langmuir 26, 4113–4118 (2010)
Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (2001)
Xu, Y.: Advances in the soy sauce industry in China. J. Ferment. Bioeng. 70, 434–439 (1990)
Ueki, T., Noda, Y., Teramoto, Y., Ohba, R., Ueda, S.: Practical soy sauce production using a mixed Koji-making system. J. Ferment. Bioeng. 78, 262–264 (1994)
Beautler, H.O.: Methods of Enzymatic Analysis, vol. VII, 3rd edn. Verlag Chemie, Weinheim (1985)
Oliveira, M.I.P., Pimentel, M.C., Montenegro, M.C.B.S.M., Araujo, A.N., Pimentel, M.F., Silva, V.L.: l-Glutamate determination in food samples by flow-injection analysis. Anal. Chim. Acta 448, 207–213 (2001)
Pauliukaite, R., Zhylyak, G., Citterio, D., Keller, U.E.S.: l-Glutamate biosensor for estimation of the taste of tomato specimens. Anal. Bioanal. Chem. 386, 220–227 (2006)
Kurita, R., Tabei, H., Hayashi, K., Horiuchi, T., Torimitsu, K., Niwa, O.: Improvement in signal reliability when measuring l-glutamate released from culture cells using multi-channels microfabricated sensors. Anal. Chim. Acta 441, 165–174 (2001)
Hakkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H., Wang, L.: On the electronic and atomic structures of small Au N-(N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 107, 6168–6175 (2003)
Xiao, L., Wang, L.: From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect. Chem. Phys. Lett. 392, 452–455 (2004)
Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
Becke, A.D.: A new inhomogeneity parameter in density functional theory. J. Chem. Phys. 109, 2092–2098 (1998)
Lee, C., Yang, W., Parr, R.G.: Development of the Colle Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)
Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991)
Bennett, A., Tensfeldt, T.G., Shirley, W.A., Mantzaris, J.: A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988)
Dunning Jr, T.H., Hay, P.J.: Modern Theoretical Chemistry, pp. 1–28. Plenum, New York (1976)
Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jense, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)
Ketabi, S., Hashemi Haeri, H., Hashemianzadeh, S.M.: Solvation free energies of glutamate and its metal complexes: a computer simulation study. J. Mol. Model. 17, 889–898 (2011)
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)
Jorgensen, W.L.: Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340 (1981)
Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Hydration of amide. J. Am. Chem. Soc. 107, 1489–1496 (1985)
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)
Rizzo, R.C., Jorgensen, W.L.: OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 121, 4827–4836 (1999)
Watkins, E.K., Jorgensen, W.L.: Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A 105, 4118–4125 (2001)
Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)
Kollman, P.A.: Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2417 (1993)
Beveridge, D.L., Di Capua, F.M.: Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18, 431–492 (1989)
Metropolis, N., Rosenbulth, A.W., Rosenbulth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1093 (1953)
Xiao, L., Tollberg, B., Hu, X., Wang, L.: Structural study of gold clusters. J. Chem. Phys. 124, 114309 (2006)
Cordero, B., Gómez, V., Platero-Prats, A., Revés, M., Echeverría, J., Cremades, E., Barragán, F., Alvarez, S.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)
Redmill, P.S., Capps, S.L., Cummings, P.T., McCabe, C.: A molecular dynamics study of the Gibbs free energy of salvation of fullerene particles in octanol and water. Carbon 47, 2865–2874 (2009)
Nanok, T., Artrith, N., Pantu, P., Bopp, P.A., Limtrakul, J.: Structure and dynamics of water confined in single-wall nanotubes. J. Phys. Chem. A 113, 2103–2108 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ketabi, S., Esteshfai, T. Computer Simulation Study of the Interactions Between Gold Clusters and Glutamate in Aqueous Solution. J Solution Chem 44, 2027–2041 (2015). https://doi.org/10.1007/s10953-015-0387-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-015-0387-0