Skip to main content
Log in

Thermodynamic Studies of Ionic Interactions for the Drug Ranitidine Hydrochloride in Aqueous Solutions at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present communication, we report the activities and activity coefficients of a model drug, ranitidine hydrochloride (RT·HCl) in aqueous solutions at 298.15 K. These calculations are based on the experimental measurements of densities and osmotic coefficients of RT·HCl in aqueous solutions as a function of concentration of the drug at 298.15 K. The density data have been used to obtain apparent and partial molar volumes at finite concentrations as well at infinite dilution and the experimental osmotic coefficient data are used to determine the activity and mean ionic activity coefficients of solute and solvent, respectively. The activity data have been processed to obtain the mixing and excess Gibbs energy changes as well as to obtain the osmotic pressure and osmotic virial coefficient of the drug. The variation of osmotic coefficient (ϕ) and ln γ ± as functions of concentration are studied; we observed a negative deviation from the limiting law in solution. The values of critical micelle concentration (cmc) and aggregation number (n) are estimated by applying the pseudo-phase separation model to the ϕ data. The data have been examined by applying the McMillan–Mayer theory of solutions and Pitzer approach for aqueous ionic solutions. The results are interpreted in terms of hydrophobic stacking interactions, structure making/breaking effects (kosmotropic/chaotropic effects) and cation–cation, cation–anion-cation attractions in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gibaldi, M., Perrier, D.: Pharmacokinetics, 2nd edn. Dekker, New York (1982)

    Google Scholar 

  2. Grahame-Smith, D.G., Aroson, J.K.: Oxford Textbook of Clinical Pharmacology and Drug Therapy. Oxford University Press, Oxford (1984)

    Google Scholar 

  3. Rowland, M., Tozar, T.N.: Clinical Pharmacokinetics—Concepts and Applications, 3rd edn. Lea and Febiger, Phadelphia (1995)

    Google Scholar 

  4. Ash, A.S.F., Schild, H.O.: Receptors mediating some actions of histamine. Br. J. Pharmacol. Chemother. 27, 427–439 (1966)

    Article  CAS  Google Scholar 

  5. Black, J.W., Duncan, W.A.M., Durant, C.J., Ganellin, C.R., Parsons, E.M.: Definition and antagonism of histamine H2 receptors. Nature 236, 385–390 (1972)

    Article  CAS  Google Scholar 

  6. Zarei, H.A., Jalili, F.: Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K. J. Chem. Thermodyn. 39, 55–66 (2007)

    Article  CAS  Google Scholar 

  7. Iqbal, M.J., Mahrukh, S.: Partial molar volume of mefenamic acid in alcohol at temperatures between T = 293.15 and T = 313.15 K. J. Braz. Chem. Soc. 17, 851–858 (2006)

    Article  CAS  Google Scholar 

  8. Attwood, D., Mosquera, V., Villar, V.P.: Thermodynamic properties of amphiphilic drugs in aqueous solution. J. Chem. Soc. Faraday Trans. I 85, 3011–3017 (1989)

    Article  CAS  Google Scholar 

  9. Attwood, D., Boitard, E., Dubes, J.P., Tachoire, H.: Apparent molar enthalpies of amphiphilic drugs in aqueous solution. J. Phys. Chem. 96, 11018–11021 (1992)

  10. Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamic studies of drug-α- cyclodextrin interactions in water at 298.15 K: promazine hydrochloride/chlorpromazine hydrochloride + α-cyclodextrin + H2O systems. J. Phys. Chem. B 111, 13645–13652 (2007)

    Article  CAS  Google Scholar 

  11. Taboada, P., Attwood, D., Ruso, J.M., Garcia, M., Mosquera, V.: Thermodynamic properties of some antidepressant drugs in aqueous solution. Langmuir 17, 173–177 (2001)

    Article  CAS  Google Scholar 

  12. Torres, D.R., Blanco, L.H., Martinez, F., Vargas, E.F.: Apparent molal volumes of lidocaine-HCl and procaine-HCl in aqueous solution as a function of temperature. J. Chem. Eng. Data 52, 1700–1703 (2007)

    Article  CAS  Google Scholar 

  13. Torres, D.R., Blanco, L.H., Vargas, E.F., Martinez, F.: Calorimetric enthalpies of solution for lidocaine-HCl and procaine-HCl in water at 298.15 K. J. Chem. Eng. Data 54, 786–790 (2009)

    Article  CAS  Google Scholar 

  14. Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC·HCl), lidocaine (LC·HCl) and tetracaine (TC·HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)

    Article  CAS  Google Scholar 

  15. Shaikh, V.R., Dagade, D.H., Terdale, S.S., Hundiwale, D.G., Patil, K.J.: Activity and activity coefficient studies of aqueous binary solutions of procaine, lidocaine and tetracaine hydrochloride at 298.15 K. J. Chem. Eng. Data 57, 3114–3122 (2012)

    Article  CAS  Google Scholar 

  16. Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)

    Article  CAS  Google Scholar 

  17. Fortier, J.L., Leduce, P.A., Desnoyers, J.E.: Thermodynamic properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25 °C. J. Solution Chem. 3, 323–349 (1974)

    Article  CAS  Google Scholar 

  18. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

  19. Millero, F.J.: In: Horne R.A. (ed.) Water and Aqueous Solutions, Structure, Thermodynamics and Transport Processes, Wiley-Interscience, New York (1972)

  20. Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)

    Article  CAS  Google Scholar 

  21. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1958)

    Google Scholar 

  22. Glasstone, S.: An Introduction to Electrochemistry. Litton Educational Publishing Inc. (1942)

  23. Gurney, R.W.: Ionic Processes in Solutions. McGraw Hill, New York (1954)

    Google Scholar 

  24. Desnoyers, J.E., Caron, G., DeLisi, R., Roberts, D., Roux, A., Perron, G.: Thermodynamic properties of alkyldimethylamine oxides in water. Application of a mass-action model for micellization. J. Phys. Chem. 87, 1397–1406 (1983)

  25. Attwood, D., Boitard, E., Dubes, J.P., Tachoire, H.: Apparent molar enthalpies of amphiphilic drugs in aqueous solution. J. Phys. Chem. 96, 11018–11021 (1992)

    Article  CAS  Google Scholar 

  26. Coudert, R., Hajji, S.M., Cao, A.: Thermodynamics of micellar systems: volumes, osmotic coefficients and aggregation numbers of a homologous series of 1,2,3-alkane triols in water. J. Colloid Interface Sci. 155, 173–182 (1993)

    Article  CAS  Google Scholar 

  27. Duff, D.G., Giles, C.H.: In: Franks, F. (ed.) Water—A Comprehensive Treatise, vol. IV. Plenum Press, New York (1974)

    Google Scholar 

  28. Patil, K., Pawar, R., Talap, P.: Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys. Chem. Chem. Phys. 2, 4313–4317 (2000)

    Article  CAS  Google Scholar 

  29. Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

    Article  CAS  Google Scholar 

  30. Dagade, D.H., Kolhapurkar, R.R., Terdale, S.S., Patil, K.J.: Thermodynamics of aqueous solutions of 18-crown-6 at 298.15 K: enthalpy and entropy effects. J. Solution Chem. 34, 415–426 (2005)

    Article  CAS  Google Scholar 

  31. Shaikh, V.R., Terdale, S.S., Abdul, A., Gupta, G.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Thermodynamic studies of aqueous solutions of 2,2,2-cryptand at 298.15 K: enthalpy–entropy compensation, partial entropies and complexation with K+ ions. J. Phys. Chem. B 117, 16249–16259 (2013)

    Article  CAS  Google Scholar 

  32. Harrington, T.M., Mole, E.L.: Heats of dilution of aqueous solutions of sodium tetraphenylboron at 25 °C. J. Chem. Soc. Faraday Trans. I 78, 2095–2100 (1982)

    Article  Google Scholar 

  33. McMillan, W., Mayer, J.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  34. Hill, T.L.: Theory of solutions. I. J. Am. Chem. Soc. 79, 4885–4890 (1957)

    Article  CAS  Google Scholar 

  35. Hill, T.L.: Theory of solutions. II. Osmotic pressure virial expansion and light scattering in two component solutions. J. Chem. Phys. 30, 93–97 (1959)

    Article  CAS  Google Scholar 

  36. Garrod, J.E., Harrington, T.M.: Dilute solution of two nonelectrolytes in a solvent. J. Phys. Chem. 73, 1877–1884 (1969)

    Article  CAS  Google Scholar 

  37. Harrington, T.M., Pethybridge, A.D., Parkin, B.R., Roffey, M.G.: Apparent molar volumes of aqueous cellobiose solutions. J. Chem. Soc. Faraday Trans. I 79, 845–852 (1983)

    Article  Google Scholar 

  38. Kozak, J.J., Knight, W.S., Kauzmann, W.: Solute solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968)

    Article  CAS  Google Scholar 

  39. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  40. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  41. Pitzer, K.S.: In: Pytkowicz, R.M. (ed.) Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, FL (1979)

    Google Scholar 

  42. Wen, W.Y., Miyajima, K., Otsuka, A.: Free energy changes on mixing solutions of alkali halides and symmetrical tetraalkylammonium halides. J. Phys. Chem. 75, 2148–2157 (1971)

    Article  CAS  Google Scholar 

  43. Holz, M., Patil, K.J.: Cation–cation association of tetramethylammonium ions in aqueous mixed electrolyte solutions. Ber. Bunsenges. Phys. Chem. 95, 107–113 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. P. P. Mahulikar, Director, School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra (India), for providing all the facilities required for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesharsingh J. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, V.R., Terdale, S.S., Hundiwale, D.G. et al. Thermodynamic Studies of Ionic Interactions for the Drug Ranitidine Hydrochloride in Aqueous Solutions at 298.15 K. J Solution Chem 44, 1875–1890 (2015). https://doi.org/10.1007/s10953-015-0385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0385-2

Keywords

Navigation