Cationic Mixed Micelles as Reaction Medium for Hydrolysis Reactions


The influence of cationic mixed micelles composed of quartenary ammonium surfactants on hydrolysis reactions has been studied in detail. The basic hydrolysis of N-methyl-N-nitroso-p-toluene sulphonamide has been chosen as the reaction probe, while mixed micelles composed of lauryl trimethyl ammonium chloride and octadecyl trimethyl ammonium chloride with different molar ratios were studied as the reaction medium. The ion-exchange pseudophase model was used to fit the experimental results to obtain the kinetic and thermodynamic parameters of the reaction. The result show that the hydrophobic character of the mixed micelles drives the association of the substrate to them, leading to a local increase of reactant concentrations at the micellar interface and, therefore, to a catalytic effect. By tuning the molar ratio of the mixed micelles it is possible to control substrate binding affinity and thus the catalytic efficiency of the reaction medium.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3


  1. 1.

    Lindman, B., Wennerstrom, H., Gustavsson, H., Kamenka, N., Brun, B.: Some aspects on the hydration of surfactant micelles. Pure Appl. Chem. 52, 1307–1315 (1980)

    CAS  Article  Google Scholar 

  2. 2.

    Blokzijl, W., Engberts, J.: Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. 32, 1545–1579 (1993)

    Article  Google Scholar 

  3. 3.

    Buurma, N.J.: Kinetic medium effects on organic reactions in aqueous colloidal solutions. Adv. Phys. Org. Chem. 43, 1–37 (2009)

    CAS  Google Scholar 

  4. 4.

    Ghosh, K.K., Sinha, D., Satnami, M.L., Dubey, D.K., Rodriguez-Dafonte, P., Mundhara, G.L.: Nucleophilic dephosphorylation of p-nitrophenyl diphenyl phosphate in cationic micellar media. Langmuir 21, 8664–8669 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    Romsted, L.S.: Surfactants in Solution, vol. 2. Plenum Press, New York (1984)

    Google Scholar 

  6. 6.

    Bunton, C.A., Savelli, G.: Organic reactivity in aqueous micelles and similar assemblies. Adv. Phys. Org. Chem. 22, 213–309 (1987)

    Google Scholar 

  7. 7.

    Cabaleiro-Lago, C., García-Río, L., Hervés, P., Mejuto, J.C., Pérez-Juste, J.: In search of fully uncomplexed cyclodextrin in the presence of micellar aggregates. J. Phys. Chem. B 110, 15831–15838 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    Cabaleiro-Lago, C., García-Río, L., Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J., Rodríguez-Dafonte, P.: Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Org. Biomol. Chem. 4, 1038–1048 (2006)

    Article  Google Scholar 

  9. 9.

    Fernández, I., García-Río, L., Hervés, P., Mejuto, J.C., Pérez-Juste, J.: β-Cyclodextrin-micelle mixed systems as a reaction media. denitrosation of MNTS. J. Phys. Org. Chem. 13, 664–669 (2000)

    Article  Google Scholar 

  10. 10.

    Skinner, W.A., Gram, H.F., Greene, M.O., Greenberg, J., Baker, B.R.: Potential anticancer agents. XXXI. The relationship of chemical structure to antileukaemic activity with analogues of 1-methyl-3-nitro-1-nitrosoguanidine. J. Med. Pharm. Chem. 2, 299–333 (1960)

    CAS  Article  Google Scholar 

  11. 11.

    Rice, S., Cheng, M.Y., Cramer, R.E., Mandel, M., Mower, H.F., Seff, K.: Structure of N-methyl-N’-nitro-N-nitrosoguanidine. J. Am. Chem. Soc. 106, 239–243 (1984)

    CAS  Article  Google Scholar 

  12. 12.

    Palmer, R.M., Ferrige, A.G., Moncada, S.: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987)

    CAS  Article  Google Scholar 

  13. 13.

    Marletta, M.A., Tayeh, M.A., Hevel, J.M.: Unraveling the biological significance of nitric oxide. BioFactors 2, 219–225 (1990)

    CAS  Google Scholar 

  14. 14.

    Murad, F.: Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Angew. Chem. Int. Ed. 38, 1857–1868 (1999)

    Article  Google Scholar 

  15. 15.

    Furchgott, R.F.: Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Angew. Chem. Int. Ed. 38, 1870–1880 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    Ignarro, L.J.: Nitric oxide: a unique endogenous signaling molecule in vascular biology. Angew. Chem. Int. Ed. 38, 1882–1892 (1999)

    CAS  Article  Google Scholar 

  17. 17.

    Lundberg, J.O., Weitzberg, E., Gladwin, M.T.: The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008)

    CAS  Article  Google Scholar 

  18. 18.

    Fukumura, D., Kashiwagi, S., Jain, R.K.: The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521–534 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J.: Nitric oxide donors: chemical activities and biological applications. Chem. Rev. 102, 1091–1134 (2002)

    CAS  Article  Google Scholar 

  20. 20.

    Williams, D.L.H.: Nitrosation reactions and the chemistry of nitric oxide. Elsevier, The Netherlands (2004)

    Google Scholar 

  21. 21.

    Castro, A., Leis, J.R., Peña, M.E.: Decomposition of N-methyl-N-nitrosotoluene-p-sulphonamide in basic media: hydrolysis and transnitrosation reactions. J. Chem. Soc. Perkin Trans. 2, 1861–1866 (1989)

    Article  Google Scholar 

  22. 22.

    García-Río, L., Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Hydrolysis of N-methyl-N-nitroso-p-toluenesulphonamide in micellar media. J. Phys. Org. Chem. 11, 584–588 (1998)

    Article  Google Scholar 

  23. 23.

    Mukerjee, P., Mysels, K.J.: Anomalies of Partially Fluorinated Surfactant Micelles. A.C.S, Washington (1971)

    Google Scholar 

  24. 24.

    Cuccovia, I.M., Feitosa, E., Chaimovich, H., Sepulveda, L., Reed, W.: Size, electrophoretic mobility, and ion dissociation of vesicles prepared with synthetic amphiphiles. J. Phys. Chem. 94, 3722–3725 (1990)

    CAS  Article  Google Scholar 

  25. 25.

    Castro, A., Leis, J.R., Peña, M.E.: Kinetic studies on the influence of micellar aggregates upon the hydrolysis and transnitrosation reactions of N-methyl-N-nitrosotoluene-p-sulphonamide. J. Chem. Soc. Perkin Trans. 2, 1221–1225 (1990)

    Article  Google Scholar 

  26. 26.

    Cordes, E.H.: Kinetics of organic reactions in micelles. Pure Appl. Chem. 50, 617–625 (1978)

    CAS  Article  Google Scholar 

  27. 27.

    Bravo, C., Hervés, P., Iglesias, E., Leis, J.R., Peña, M.E.: Kinetic study of the nitrosation reaction of 1,3-dimethylurea in dioxane–water mixtures. J. Chem. Soc. Perkin Trans. 2, 1969–1974 (1990)

    Article  Google Scholar 

  28. 28.

    Bravo, C., Hervés, P., Leis, J.R., Peña, M.E.: Solvent-induced mechanistic changes in nitrosation reactions. Part 2. Effect of acetonitrile–water mixtures in the nitrosation of ureas. J. Chem. Soc. Perkin Trans. 2, 2091–2095 (1991)

    Article  Google Scholar 

  29. 29.

    Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Kinetic studies on the acid and alkaline hydrolysis of N-methyl-N-nitroso-p-toluenesulfonamide in dioctadecyldimethylammonium chloride vesicles. Langmuir 13, 6633–6637 (1997)

    Article  Google Scholar 

Download references


Financial support from the Spanish MINECO (MAT 2013-45168-R) is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Pablo Hervés.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 416 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández, I., Pérez-Juste, J. & Hervés, P. Cationic Mixed Micelles as Reaction Medium for Hydrolysis Reactions. J Solution Chem 44, 1866–1874 (2015).

Download citation


  • Kinetics
  • Mixed micelles
  • Catalysis
  • Microheterogeneous media