Skip to main content
Log in

A New Pitzer Parameterization for the Binary NaOH–H2O and Ternary NaOH–NaCl–H2O and NaOH–LiOH–H2O Systems up to NaOH Solid Salt Saturation, from 273.15 to 523.15 K and at Saturated Vapor Pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a new set of Pitzer ion interaction model parameters for the binary NaOH–H2O system for concentrations up to over 30 mol·kg−1 and temperatures ranging from 273.15 to 523.15 K. Assuming that the electrolyte is only partially dissociated, the model requires the adjustment of (i) the three classical binary interaction parameters β (0), β (1) and Cϕ, (ii) the equilibrium constant of formation of the aqueous complex NaOH0(aq), and iii) one binary (λ NaOH/NaOH) and one ternary (\( \zeta_{{{\text{NaOH}}/{\text{Na}}^{ + } /{\text{OH}}^{-} }} \)) interaction parameter. This approach, which provides much better results than the approach of treating NaOH as a fully dissociated electrolyte, was chosen to extend the description of the system to high temperatures and high concentrations. The temperature functions of the solubility products of anhydrous NaOH(cr) and five hydrated salts, NaOH·nH2O(cr) (where n = 1, 2, 3.11, 3.5, 4α), were determined. In order to evaluate the quality of the new set of parameters, several tests were run on various properties using various literature data. These include the boiling point elevation in the NaOH–H2O system and the phase diagrams of the two ternary systems NaOH–NaCl–H2O and NaOH–LiOH–H2O. Interaction parameters for the two related binary systems NaCl–H2O and LiOH–H2O were taken from previous studies. To ensure consistency, four new mixing parameters were revised (\( \zeta_{{{\text{Na}}^{ + } /{\text{Cl}}^{-} /{\text{NaOH}}}} \) and \( \varPsi_{{{\text{Cl}}^{-} /{\text{OH}}^{-} /{\text{Na}}^{ + } }} \) for the ternary system NaOH–NaCl–H2O and \( \lambda_{{{\text{Li}}^{ + } /{\text{NaOH}}}} \) and \( \varPsi_{{{\text{OH}}^{ - } /{\text{Na}}^{ + } /{\text{Li}}^{ + } }} \) for the ternary system NaOH–LiOH–H2O). Consistent with Pitzer’s equations, our new set of parameters can be used to satisfactorily describe the quaternary Na+–Li+–Cl–OH–H2O system to very high concentrations and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, J., Polka, H.-M., Gmehling, J.: A g E model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes. Fluid Phase Equilib. 94, 89–114 (1994)

    Article  CAS  Google Scholar 

  2. Chen, C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  3. Abovsky, V., Liu, Y., Watanasiri, S.: Representation of nonideality in concentrated electrolyte solutions using the electrolyte NRTL model with concentration-dependent parameters. Fluid Phase Equilib. 150–151, 277–286 (1998)

    Article  Google Scholar 

  4. Thomsen, K.: Aqueous Electrolytes Model Parameters and Process Simulation, http://orbit.dtu.dk/fedora/objects/orbit:79189/datastreams/file_3025526/content (1997)

  5. Zhao, E., Yu, M., Sauvé, R.E., Khoshkbarchi, M.K.: Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib. 173, 161–175 (2000)

    Article  CAS  Google Scholar 

  6. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  7. Greenberg, J.P., Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta 53, 2503–2518 (1989)

    Article  CAS  Google Scholar 

  8. Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  9. Christov, C.: Thermodynamics of formation of double salts and mixed crystals from aqueous solutions. J. Chem. Thermodyn. 37, 1036–1060 (2005)

    Article  CAS  Google Scholar 

  10. Pickering, S.U.: LXI—the hydrates of sodium, potassium, and lithium hydroxides. J. Chem. Soc. 63, 890–909 (1893)

    Article  CAS  Google Scholar 

  11. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  12. Pabalan, R.T., Pitzer, K.S.: Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O. Geochim. Cosmochim. Acta 51, 2429–2443 (1987)

    Article  CAS  Google Scholar 

  13. Pabalan, R.T., Pitzer, K.S.: Thermodynamics of NaOH(aq) in hydrothermal solutions. Geochim. Cosmochim. Acta 51, 829–837 (1987)

    Article  CAS  Google Scholar 

  14. Simonson, J.M., Mesmer, R.E., Rogers, P.S.Z.: The enthalpy of dilution and apparent molar heat capacity of NaOH(aq) to 523 K and 40 MPa. J. Chem. Thermodyn. 21, 561–584 (1989)

    Article  CAS  Google Scholar 

  15. Petrenko, S.V., Pitzer, K.S.: Thermodynamics of aqueous NaOH over the complete composition range and to 523 K and 400 MPa. J. Phys. Chem. B. 101, 3589–3595 (1997)

    Article  CAS  Google Scholar 

  16. Christov, C., Møller, N.: Chemical equilibrium model of solution behavior and solubility in the H-Na–K–OH–Cl–HSO4–SO4–H2O system to high concentration and temperature. Geochim. Cosmochim. Acta 68, 1309–1331 (2004)

    Article  CAS  Google Scholar 

  17. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Zeitschrift. 24, 185–206 (1923)

  18. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)

    Article  CAS  Google Scholar 

  19. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

  20. Kim, H.T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)

    Article  CAS  Google Scholar 

  21. Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)

    Article  CAS  Google Scholar 

  22. Anstiss, R.G., Pitzer, K.S.: Thermodynamics of very concentrated aqueous electrolytes: LiCl, ZnCl2, and ZnCl2–NaCl at 25 °C. J. Solution Chem. 20, 849–858 (1991)

    Article  CAS  Google Scholar 

  23. Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)

    Article  CAS  Google Scholar 

  24. Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J. Solution Chem. 5, 269–278 (1976)

    Article  CAS  Google Scholar 

  25. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H3PO4(aq) at elevated temperatures. J. Solution Chem. 28, 327–340 (1999)

    Article  CAS  Google Scholar 

  26. Jiang, C.: Thermodynamics of aqueous phosphoric acid solution at 25 °C. Chem. Eng. Sci. 51, 689–693 (1996)

    Article  CAS  Google Scholar 

  27. Cherif, M., Mgaidi, A., Ammar, M.N., Abderrabba, M., Fürst, W.: Modelling of the equilibrium properties of the system H3PO4–H2O: representation of VLE and liquid phase composition. Fluid Phase Equilib. 175, 197–212 (2000)

    Article  CAS  Google Scholar 

  28. Lassin, A., Christov, C., André, L., Azaroual, M.: A thermodynamic model of aqueous electrolyte solution behavior and solid–liquid equilibrium in the Li–H–Na–K–Cl–OH–LiCl0(aq)–H2O system to very high concentrations (40 molal) and from 0 to 250 °C. Am. J. Sci. 315, 204–256 (2015)

    Article  CAS  Google Scholar 

  29. Parkhurst, D. L., Appelo, C. A. J.: User‘s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey (1999)

  30. Clegg, S.L., Whitfield, M.: Activity coefficient in natural waters. In: Pitzer, K.S. (ed.) Activity Coefficient in Electrolyte Solutions, pp. 279–434. CRC Press, Boca Raton (1991)

    Google Scholar 

  31. Filippov, V.K., Charykov, N.A., Solechnik, N.D.: Thermodynamics of the systems Ni//Cl, SO4–H2O and Co//Cl, SO4–H2O at 25 °C. Russ. J. Appl. Chem. 58, 1811–1814 (1985)

    Google Scholar 

  32. Møller, N.: The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

  33. Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)

    Article  CAS  Google Scholar 

  34. Robinson, R.A., Stokes, R.H.: Tables of osmotic and activity coefficients of electrolytes in aqueous solution at 25 °C. Trans. Faraday Soc. 45, 612–624 (1949)

    Article  CAS  Google Scholar 

  35. Kangro, W., Groeneveld, A.: Konzentrierte wäßrige Lösungen. I. Z. Phys. Chem. 32, 110–126 (1962)

    Article  CAS  Google Scholar 

  36. Dibrov, I., Mal’tsev, G., Mashovets, V.: Saturated vapor pressure of caustic soda and sodium aluminate solutions in the 25–350 °C temperature range over a wide range of concentrations. J. Appl. Chem. USSR. 37, 1907–1915 (1964)

  37. Campbell, A.N., Bhatnagar, O.N.: Osmotic and activity coefficients of sodium hydroxide in water from 150 to 250 °C. J. Chem. Eng. Data. 29, 166–168 (1984)

    Article  CAS  Google Scholar 

  38. Krumgalz, B., Mashovets, V.: Vapor pressure of NaOH solutions (of over 45% concentration) at temperatures up to 400 °C. J. Appl. Chem. USSR. 37 (1964)

  39. Holmes, H.F., Mesmer, R.E.: Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 30, 311–326 (1998)

    Article  CAS  Google Scholar 

  40. Cohen-Adad, R., Tranquard, A., Péronne, R., Negri, P., Rollet, A.-P.: Le système eau–hydroxyde de sodium. Compte rendus l’académie des Sci. 251, 2035–2037 (1960)

    Google Scholar 

  41. Zdanovskii, A.B., Solov’eva, E.F., Lyakhovskaya, E.I., Shestakov, N.E., Shleimovich, R.E., Abutkova, L.M.: Experimental Solubility Data on Salt–Water Systems. Vol. 1, Three Component Systems, 2nd edn., Corrected and Completed, 1070 pp. “Chemistry” Publishing, Leningrad (in Russian) (1973)

  42. Linke, W.: Solubilities Inorganic and Metal–Organic Compounds, 4th edn., American Chemical Society (1958)

  43. Lindsay, W.T. Jr.: Chemistry of steam cycle solutions: principles. In: Cohen, P. (ed.) The ASME Handbook on Water Technology for Thermal Power Systems, pp. 341–544. American Society of Mechanical Engineers (1989)

  44. Chen, X., Gillespie, S.E., Oscarson, J.L., Izatt, R.M.: Enthalpy of dissociation of water at 325 °C and logK, ΔH, ΔS, and ΔCp values for the formation of NaOH(aq) from 250 to 325 °C. J. Solution Chem. 21, 803–824 (1992)

    Article  CAS  Google Scholar 

  45. Ho, P.C., Palmer, D.A.: Ion association of dilute aqueous sodium hydroxide solutions to 600 °C and 300 MPa by conductance measurements. J. Solution Chem. 25, 711–729 (1996)

    Article  CAS  Google Scholar 

  46. Ho, P., Palmer, D., Wood, R.: Conductivity measurements of dilute aqueous LiOH, NaOH, and KOH solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B. 104, 12084–12089 (2000)

    Article  CAS  Google Scholar 

  47. Fuangswasdi, S., Oscarson, J.: Enthalpies of dilution of NaOH, KOH, and HCl and thermodynamic quantities for the formation of these species from their constituent ions in aqueous solution from 300 °C. Ind. Eng. Chem. Res. 39, 3508–3515 (2000)

    Article  CAS  Google Scholar 

  48. Bianchi, H., Corti, H., Fernandez-Prini, R.: Electrical conductivity of aqueous sodium hydroxide solutions at high temperatures. J. Solution Chem. 23, 1203–1212 (1994)

    Article  CAS  Google Scholar 

  49. Gimblett, F., Monk, C.: Emf studies of electrolytic dissociation. Part 7.—Some alkali and alkaline earth metal hydroxides in water. Trans. Faraday Soc. 50, 965–972 (1954)

    Article  CAS  Google Scholar 

  50. Sharma, S.K., Kashyap, S.C.: Ionic interaction in alkali metal hydroxide solutions—a Raman spectral investigation. J. Inorg. Nucl. Chem. 34, 3623–3630 (1972)

    Article  CAS  Google Scholar 

  51. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttal, R.L.: The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data. 11(Supp. No. 2), 393 pp. (1982)

  52. Ge, X., Wang, X.: Estimation of freezing point depression, boiling point elevation, and vaporization enthalpies of electrolyte solutions. Ind. Eng. Chem. Res. 48, 2229–2235 (2009)

    Article  CAS  Google Scholar 

  53. Lide, D.: CRC Handbook of Chemistry and Physics, 88th edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  54. Kirschstein, G.: Physikalische Eigenschaften der festen Salze. In: Kirschstein, G. (ed.) Gmelin Handbook of Inorganic and Organometallic Chemistry. Springer, Berlin (1972), p. 226

  55. Bialik, M., Sedin, P., Theliander, H.: Boiling point rise calculations in sodium salt solutions. Ind. Eng. Chem. Res. 47, 1283–1287 (2008)

    Article  CAS  Google Scholar 

  56. Haltenberger, W.: Enthalpy–concentration charts from vapor pressure data. Ind. Eng. Chem. 31, 783–786 (1939)

    Article  CAS  Google Scholar 

  57. Chase, M.W.J.: NIST-JANAF Thermochemical tables. J. Phys. Chem. Ref. Data, Monogr. 9, 1–1951 (1998)

    Google Scholar 

  58. Blanc, P., Lassin, A., Piantone, P.: Thermoddem a database devoted to waste minerals. http://thermoddem.brgm.fr (2012)

  59. Königsberger, E., Königsberger, L.-C., Hefter, G., May, P.M.: Zdanovskii’s rule and isopiestic measurements applied to synthetic Bayer liquors. J. Solution Chem. 36, 1619–1634 (2007)

    Article  Google Scholar 

  60. Harned, H., Harris, J.J.: The activity coefficients of sodium and potassium hydroxides in their corresponding chloride solutions at high constant total molality. J. Am. Chem. Soc. 50, 2633–2637 (1928)

    Article  CAS  Google Scholar 

  61. Harned, H., Cook, M.: The activity and osmotic coefficients of some hydroxide–chloride mixtures in aqueous solution. J. Am. Chem. Soc. 59, 1890–1893 (1937)

    Article  CAS  Google Scholar 

  62. Zdanovskii, A.B., Solov’eva, E.F., Lyakhovskaya, E.I., Shestakov, N.E., Shleimovich, R.E., Abutkova, L.M.: Experimental Solubility Data on Salt–Water Systems. Vol. 2, Four Component and More Complex Systems, 2nd edn., corrected and completed, 1064 pp. “Chemistry” Publishing, Leningrad. (in Russian) (1975)

  63. Pokrovskii, V.A., Helgeson, H.C.: Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3–H2O–NaCl. Am. J. Sci. 295, 1255–1342 (1995)

    Article  CAS  Google Scholar 

  64. Cherif, M., Mgaidi, A., Ammar, M.N., Vallée, G., Fürst, W.: A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J. Solution Chem. 29, 255–269 (2000)

    Article  CAS  Google Scholar 

  65. Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)

    Article  CAS  Google Scholar 

  66. Felmy, A.R., Cho, H., Rustad, J.R., Mason, M.J.: An aqueous thermodynamic model for polymerized silica species to high ionic strength. J. Solution Chem. 30, 509–525 (2001)

    Article  CAS  Google Scholar 

  67. Møller, N., Christov, C., Weare, J.H.: Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminium silicate minerals. 32nd Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, USA, January 22–24, 2007 (2007).

  68. Christov, C.: Temperature variable chemical model of bromide–sulfate solution interaction parameters and solid–liquid equilibria in the Na–K–Ca–Br–SO4–H2O system. Calphad. 36, 71–81 (2012)

    Article  CAS  Google Scholar 

  69. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991)

    Google Scholar 

  70. Zemaitis, J.F.: Handbook of Aqueous Electrolyte Thermodynamics. Wiley, New York (1986)

    Book  Google Scholar 

Download references

Acknowledgments

This work was funded by BRGM, the French Geological Survey. The authors thank the LABEX Voltaire (ANR-10-LABX-100-01). The authors warmly thank Christomir Christov and an anonymous reviewer for their reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Lach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2015_357_MOESM1_ESM.docx

The online version of this article (doi:10.1007/s10953-15-……) contains supplementary material, which is available to authorized users. Supplementary material 1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lach, A., André, L., Lassin, A. et al. A New Pitzer Parameterization for the Binary NaOH–H2O and Ternary NaOH–NaCl–H2O and NaOH–LiOH–H2O Systems up to NaOH Solid Salt Saturation, from 273.15 to 523.15 K and at Saturated Vapor Pressure. J Solution Chem 44, 1424–1451 (2015). https://doi.org/10.1007/s10953-015-0357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0357-6

Keywords

Navigation