Skip to main content
Log in

Pitzer Model Anion–Anion and Ternary Interaction Parameters for the Na2C2O4–NaOH–H2O and Na2C2O4–NaNO3–H2O Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Alkaline high-level nuclear wastes in the United States contain large inventories of sodium oxalate (Na2C2O4) immersed in Na+-, \( {\text{NO}}_{3}^{ - } \)- and OH-bearing electrolyte solutions. Dissolution and precipitation of Na2C2O4 will likely influence the treatment of this waste. The Pitzer model has been widely used to model electrolyte solubility during high-level nuclear waste processing. The present study determines the anion–anion (θ) and ternary cation–anion–anion (ψ) Pitzer interaction parameters for oxalate Na2C2O4–NaNO3–H2O and Na2C2O4–NaOH–H2O systems by fitting the Pitzer model with Na2C2O4 solubility data in aqueous NaNO3 and NaOH solutions. The \( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)\( {\text{NO}}_{3}^{ - } \) and \( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH θ parameters were found to be 0.02369 and −0.005304, respectively. The Na–\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)\( {\text{NO}}_{3}^{ - } \) and Na–\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH ψ parameters were found to be 0.04069 and 0.017044, respectively. The solubility data could be modeled with temperature independent θ and ψ values over the experimental range investigated, which was 20–75 °C for the Na2C2O4–NaNO3–H2O system and 0–50 °C for the Na2C2O4–NaOH–H2O system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sharma, A.K., Clauss, S.A., Mong, G.M., Wahl, K.L., Campbell, J.A.: Analysis and quantification of organic acids in simulated Hanford tank waste and Hanford tank waste. J. Chromatogr. A 805, 101–107 (1998)

    Article  CAS  Google Scholar 

  2. Toste, A.P., Lechner-Fish, T.J., Scheele, R.D.: Organics in a Hanford mixed waste revisited: myriad organics and chelator fragments unmasked. J. Radioanal. Nucl. Chem. 296, 523–530 (2013)

    Article  CAS  Google Scholar 

  3. Reynolds, J.G., Cooke, G.A., Herting, D.L., Warrant, R.W.: Salt mineralogy of Hanford high-level waste staged for treatment. Ind. Eng. Chem. Res. 52, 9741–9751 (2013)

    Article  CAS  Google Scholar 

  4. Toste, A.P.: Degradation of chelating and complexing agents in an irradiated, simulated mixed waste. J. Radioanal. Nucl. Chem. 161, 549–559 (1992)

    Article  CAS  Google Scholar 

  5. Toste, A.P.: Gamma radiolysis of EDTA in a simulated, mixed nuclear waste. J. Radioanal. Nucl. Chem. 235, 213–219 (1998)

    Article  CAS  Google Scholar 

  6. Toste, A.P.: Detailed study of the γ-radiolysis of nitrilotriacetatic acid in a simulated, mixed nuclear waste. J. Radioanal. Nucl. Chem. 239, 433–439 (1999)

    Article  CAS  Google Scholar 

  7. Toste, A.P.: The gamma-radiolysis of HEDTA in a simulated, mixed waste. J. Radioanal. Nucl. Chem. 249, 283–288 (2001)

    Article  CAS  Google Scholar 

  8. Toste, A.P., Pilot, T.: Detailed study of HEDTA’s chemodynamics upon gamma-radiolysis in a simulated, mixed waste. J. Radioanal. Nucl. Chem. 277, 5–10 (2008)

    Article  CAS  Google Scholar 

  9. Warrant, R.W., Cooke, G.A.: Characterization of the solids waste in the Hanford waste tanks using a combination of XRD, SEM and PLM. Adv. X-Ray Anal. 46, 251–256 (2003)

    CAS  Google Scholar 

  10. Reynolds, J.G., Cooke, G.A., Herting, D.L., Warrant, R.W.: Evidence for dawsonite in Hanford high-level nuclear waste tanks. J. Hazard. Mater. 209–210, 186–192 (2012)

    Article  Google Scholar 

  11. McGinnis, C.P., Welch, T.D., Hunt, R.D.: Caustic leaching of high-level radioactive tank sludge: a critical literature review. Sep. Sci. Technol. 34, 1479–1494 (1999)

    Article  CAS  Google Scholar 

  12. Russell, R.L., Snow, L.A., Peterson, R.A.: Methods to avoid post-filtration precipitation in treatment of high-level waste. Sep. Sci. Technol. 45, 1814–1821 (2010)

    Article  CAS  Google Scholar 

  13. Okemgbo, A.A., Hill, H.H., Metcalf, S.G., Bachelor, M.A.: Determination of nitrate and nitrite in Hanford defense waste by reverse-polarity capillary zone electrophoresis. J. Chromatogr. A 844, 387–394 (1999)

    Article  CAS  Google Scholar 

  14. Poirier, M.R., Hay, M.S., Herman, D.T., Crapse, K.P., Thaxton, G.D., Fink, S.D.: Removal of sludge heels in Savannah River site waste tanks with oxalic acid. Sep. Sci. Technol. 45, 1858–1875 (2010)

    Article  CAS  Google Scholar 

  15. Rao, V.K., Pius, I.C., Subbarao, M., Chinnusamy, A., Natarajan, P.R.: Precipitation of plutonium oxalate from homogeneous solutions. J. Radional. Nucl. Chem. 100, 129–134 (1986)

    Article  CAS  Google Scholar 

  16. Tachimori, S., Nakamura, H.: Extraction of some elements by mixture of DIDPA–TBP and its application to actinoid partitioning process. J. Nucl. Sci. Technol. 19, 326–333 (1982)

    Article  Google Scholar 

  17. Jackson, P.E.: Analysis of oxalate in Bayer liquors: a comparison of ion chromatography and capillary electrophoresis. J. Chromatogr. A 693, 155–161 (1995)

    Article  CAS  Google Scholar 

  18. Qafoku, O., Felmy, A.R.: Development of accurate chemical equilibrium models for oxalate species to high ionic strength in the system: Na–Ba–Ca–Mn–Sr–Cl–NO3–PO4–SO4–H2O at 25 °C. J. Solution Chem. 36, 81–95 (2007)

    Article  CAS  Google Scholar 

  19. Königsberger, E., Eriksson, G., May, P.M., Hefter, G.: Comprehensive model of synthetic Bayer liquors. Part 1. Overview. Ind. Eng. Chem. Res. 44, 5805–5814 (2005)

    Article  Google Scholar 

  20. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  21. Reynolds, J.G., Carter, R., Felmy, A.R.: A Pitzer interaction model for the NaNO3–NaNO2–NaOH–H2O system from 0 to 100 °C. Ind. Eng. Chem. Res. 54, 3062–3070 (2015)

    Article  CAS  Google Scholar 

  22. Carter, R., Pierson, K.L., Reynolds, J.G.: Binary Pitzer model parameters for predicating the solubility of key electrolytes in Hanford waste. In: Proceedings of Waste Management 2014, Waste Management Symposia Inc., Tucson, Arizona (2014)

  23. Weber, C.F.: Thermodynamic Modeling of Savannah River Evaporators. ORNL/TM-2001/102. Oak Ridge National Laboratory, Oak Ridge (2001)

    Book  Google Scholar 

  24. Weber, C.F., Beahm, E.C., Lee, D.D., Watson, J.S.: A solubility model for aqueous solutions containing sodium, fluoride, and phosphate ions. Ind. Eng. Chem. Res. 39, 518–526 (2000)

    Article  CAS  Google Scholar 

  25. Weber, C.F.: Calculation of Pitzer parameters at high ionic strength. Ind. Eng. Chem. Res. 39, 4422–4426 (2000)

    Article  CAS  Google Scholar 

  26. Riddle, J.D., Lockwood, D.J., Irish, D.E.: Ion pair formation in NaNO3/D2O solutions: Raman and infrared spectra, partial molal volumes, conductance, and viscosity. Can. J. Chem. 50, 2951–2962 (1972)

    Article  Google Scholar 

  27. Harvie, C.E., Greenberg, J.P., Weare, J.H.: A chemical equilibrium algorithm for highly non-ideal multi-phase systems: free energy minimization. Geochim. Cosmochim. Acta 51, 1045–1057 (1987)

    Article  CAS  Google Scholar 

  28. Karpov, I.K., Chudnenko, K.V., Kulik, D.A.: Modeling chemical mass transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297, 767–806 (1997)

    Article  CAS  Google Scholar 

  29. Zhikharev, M.I., Kol’ba, V.I., Sukhanov, L.P.: The Na2C2O4–NaNO3–H2O system at 20 °C. Russ. J. Inorg. Chem. 24, 469–470 (1979)

    Google Scholar 

  30. Kol’ba, V.I., Zhikharev, M.I., Sukhanov, L.P.: The Na2C2O4–NaNO3–H2O system at 50 and 75 °C. Russ. J. Inorg. Chem 25, 1583–1584 (1980)

    Google Scholar 

  31. Reynolds, J.G.: Application of mixture models to solubility calculations, using sodium oxalate as an example. Sep. Sci. Technol. 43, 2872–2886 (2008)

    Article  CAS  Google Scholar 

  32. Norris, W.H.H.: The system oxalic acid–sodium hydroxide–water. J. Chem. Soc. 373, 1708–1715 (1951)

    Article  Google Scholar 

  33. Tromans, A.J.: Solution Chemistry of Some Dicarboxylate Salts of Relevance to the Bayer Process. Ph.D. Dissertation, Murdoch University, Australia (2003)

  34. Buchner, R., Samani, F., May, P.M., Sturm, P., Hefter, G.: Hydration and ion pairing in aqueous sodium oxalate solutions. ChemPhysChem 4, 373–378 (2003)

    Article  CAS  Google Scholar 

  35. Singh, R.P.: On the existence of the NaC2O4 ion pair complex. Bull. Chem. Soc. Jpn. 62, 4089–4091 (1989)

    Article  CAS  Google Scholar 

  36. Tromans, A.J., Hefter, G., May, P.M.: Potentiometric investigation of weak association of sodium and oxalate ions in aqueous solution at 25 °C. Aust. J. Chem. 58, 213–217 (2005)

    Article  CAS  Google Scholar 

  37. Menczel, B., Apelblat, A., Korin, E.: The molar enthalpies of solution and solubilities of ammonium, sodium and potassium oxalates in water. J. Chem. Thermodyn. 36, 41–44 (2004)

    Article  CAS  Google Scholar 

  38. Leaist, D.G., Goldik, J.: Diffusion and ion association in concentrated solutions of aqueous lithium, sodium, and potassium sulfates. J. Solution Chem. 30, 103–118 (2001)

    Article  CAS  Google Scholar 

  39. Capewell, S.G., Hefter, G., May, P.M.: Potentiometric investigation of the weak association of sodium and carbonate Ions at 25 °C. J. Solution Chem. 27, 865–877 (1998)

    Article  CAS  Google Scholar 

  40. Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strength at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  41. Jones, C.Y., Chen, G., Dai, S., Singh, P.M.: Solubility in the NaOH–Na2CO3–Na2SO4–Na2SO3–Na2S–H2O system, a simulated black liquor recovery boiler smelt. Ind. Eng. Chem. Res. 42, 4228–4233 (2003)

    Article  CAS  Google Scholar 

  42. Stieger, M., Kiekbusch, J., Nicolai, A.: An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr. Build. Mater. 22, 1841–1850 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andrew Felmy for extensive review of this model and assistance in software verification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Reynolds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, J.G., Carter, R. Pitzer Model Anion–Anion and Ternary Interaction Parameters for the Na2C2O4–NaOH–H2O and Na2C2O4–NaNO3–H2O Systems. J Solution Chem 44, 1358–1366 (2015). https://doi.org/10.1007/s10953-015-0351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0351-z

Keywords

Navigation