Abstract
The potential of a lead amalgam–lead sulfate electrode has been measured relative to a hydrogen electrode in sulfuric acid at temperatures up to 175 °C to obtain the standard reduction potential of the electrode and activity coefficients of sulfuric acid up to 0.2 mol·kg−1. The resulting values are in agreement with earlier published values for 25 and 50 °C and provide new results at elevated temperatures. It was found that the amalgam electrode was not stable in more concentrated acid, but it is suggested that the new results may be used to calibrate a more practical reference electrode system such as lead oxide–lead sulfate for use in studies of more complex sulfate solutions at elevated temperatures and at higher acid concentrations.
Similar content being viewed by others
References
Muller, T.L.: Sulfuric acid and sulfur trioxide. In: Mark, H.F., et al. (eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 5th edn. Wiley, New York (2006). doi:10.1002/0471238961.1921120613211212.a01.pub2
Meddings, B., Evans, D.J.I.: The changing role of hydrometallurgy. Can. Mining Metall. Bull. 64, 48–57 (1971)
Pavlov, D.: Lead-Acid Batteries: Science and Technology. Elsevier, Oxford (2011)
Chenier, P.J.: Sulfuric acid and its derivatives. Survey of Industrial Chemistry (Chap. II), 3rd edn, pp. 23–57. Springer, Heidelberg (2002)
Schlesinger, M., Paunovic, M.: Modern Electroplating. Wiley, New York (2011)
Greeley, R.S., Smith, W.T., Stoughton, R.W., Lietzke, M.H.: Electromotive force studies in aqueous solutions at elevated temperatures I. The standard potential of the silver–silver chloride electrode. J. Phys. Chem. 64, 652–657 (1960)
Ives, D.J.G., Janz, G.J.: Reference Electrodes, Theory and Practice. Academic Press, New York (1969)
Bates, R.G., Edelstein, M., Acree, S.F.: Reproducibility of the lead electrode and the electromotive force of the lead stick-lead amalgam cell at 0 to 60 °C. J. Res. Natl. Bur. Stand. 36, 159–170 (1946)
Fusi, P., Mussini, P.R.: The lead amalgam/lead sulfate electrode redesigned and reassessed. J. Solution Chem. 26, 337–352 (1997)
Mussini, P., Mussini, T.: Sulfate-sensing electrodes. The lead-amalgam/lead sulfate electrode (IUPAC Technical Report). Pure Appl. Chem. 74, 593–600 (2002)
Lewis, G.N., Randall, M.R., Pitzer, K.S., Brewer, L.: Thermodynamics. McGraw-Hill, New York (1961)
Guggenheim, E.A.: Thermodynamics. North Holland Publishing, Amsterdam (1959)
Schoenberg, M.R.: Development of a sulfate-reversible reference electrode. Ph.D. Thesis, University of Wisconsin-Madison (1974)
Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths, London (1959)
Greeley, R.S.: Thermodynamic properties of dilute aqueous hydrochloric acid solutions at elevated temperatures from electromotive force measurements. Ph.D. Thesis, University of Tennessee (1959)
Åkerlöf, G.C., Oshry, H.I.: The dielectric constant of water at high temperature and in equilibrium with its vapor. J. Am. Chem. Soc. 72, 2844–2847 (1950)
Lietzke, M.H., Stoughton, R.W., Young, T.F.: The bisulfate acid constant from 25 to 225°C as computed from solubility data. J. Phys. Chem. 65, 2247–2249 (1961)
Purdum, R.B., Rutherford, H.A.: The solubilities of sparingly soluble salts using large volumes of solvent I. The solubility of lead sulfate. J. Am. Chem. Soc. 55, 3221–3223 (1933)
Huybrechts, R., Ramelot, H.: Solubilite du sulfate plombique dans l’eau et dans des solutions de quelques electrolytes. Bull. Soc. Chim. Belg. 36, 239–260 (1927)
Craig, D.N., Vinal, C.W.: Solubility of lead sulfate in solutions of sulfuric acid, determined by dithizone with a photronic cell. J. Res. Natl. Bur. Stand. 22, 55–71 (1939)
Pitzer, K.S.: Thermodynamic properties of aqueous solutions of bivalent sulfates. J. Chem. Soc. Faraday Trans. I 68, 101–113 (1972)
Liu, H., Papangelakis, V.G.: Solubility of Pb(II) and Ni(II) in mixed sulfate–chloride solutions with the mixed solvent electrolyte model. Ind. Eng. Chem. Res. 45, 39–47 (2006)
Helgeson, H.G.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Res. 267, 729–804 (1969)
Clever, H.L., Johnston, F.J.: The solubility of some sparingly soluble salts: an evaluation of the solubility in water and aqueous electrolyte solutions. J. Phys. Chem. Ref. Data 9, 751–784 (1980)
Puigdomenech, I., Rard, J.A., Plyasunov, A.V., Grenthe, I.: Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe, I., Puigdomenech, I. (eds.) Modelling in Aquatic Systems (Chap. X), pp. 427–493. OECD Publications, Paris (1997)
Lewis, D.: Studies of redox equilibria at elevated temperatures I. Arkiv für Kemi 32, 385–404 (1970)
Criss, C.M., Cobble, J.W.: The thermodynamic properties of high temperature solutions V. The calculation of ionic heat capacities up to 200 °C. Entropy and heat capacity above 200 °C. J. Am. Chem. Soc. 86, 5390–5393 (1964)
Bates, R.G.: Electrometric pH Determination, p. 42. Wiley, New York (1959)
Daniels, F., Mathews, J.H., Williams, J.W., Bender, P., Alberty, R.D.: Experimental Physical Chemistry, 5th edn, p. 177. McGraw-Hill, New York (1956)
Feltam, A.M., Spiro, M.: Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971)
Predel, B.: Mercury-lead. In: Madelung, O. (ed.) Phase Equilibria of Binary Alloys, Group IV: Subvolume G. The Landolt-Bornstein Database, vol. 5. Springer Materials, Heidelberg (2013)
Puschin, N.A.: Uber die legierungen des quecksilbers. Z. Anorg. Allg. Chem. 36, 201–254 (1903)
Shrawder, J., Cowpertwaite, I.A.: The activity coefficient of sulfuric acid at temperatures from 0 to 50 °C. J. Am. Chem. Soc. 56, 2340–2345 (1934)
Covington, A.K., Dobson, J.V., Wynne-Jones, W.F.K.: Stoichiometric activity coefficients of sulfuric acid and the standard potential of the lead dioxide/lead sulfate and mercury/mercurous sulfate electrodes at 25 °C. J. Chem. Soc. Trans. Faraday Soc. I 61, 2050–2056 (1965)
Stokes, R.H.: The measurement of vapor pressure of aqueous solutions by the bi-thermal equilibration through the vapor phase. J. Am. Chem. Soc. 69, 1291–1296 (1947)
Cowperthwaite, I.A., Shrawder, J.: The partial molal heat of dilution of sulfuric acid from electromotive force measurements. J. Am. Chem. Soc. 56, 2345–2347 (1934)
Staples, B.R.: Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K. J. Phys. Chem. Ref. Data 10, 779–797 (1981)
Harned, H.S., Hamer, W.J.: The thermodynamics of aqueous sulfuric acid from electromotive force measurements. J. Am. Chem. Soc. 57, 27–33 (1935)
Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XVII—Revision of data for all 2:1 and 2:2 electrolytes at 25 °C. J. Chem. Soc. Trans. Faraday Soc. I 44, 295–307 (1948)
Gardner, W.L., Mitchell, R.E., Cobble, J.W.: Thermodynamic properties of high temperature aqueous solutions X. Electrode potentials of sulfate-ion electrodes from 0 to 100 °C. Activity coefficient and the entropy of aqueous sulfuric acid. J. Phys. Chem. 73, 2021–2024 (1969)
Staples, B.R., Wobbeking, T.F.: A Compilation of Thermodynamic and Transport Properties of Aqueous Sulfuric Acid. National Bureau of Standards, NBSIR-81-2276, Washington, DC (1980)
Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic properties of 0–6 mol kg−1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. I 90, 1875–1894 (1994)
Clegg, S.L., Brimblecombe, P.: Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg−1 aqueous sulfuric acid from <200 to 328 K. J. Chem. Eng. Data 40, 43–64 (1995)
Sippola, H., Taskinen, P.: Thermodynamic properties of aqueous sulfuric acid. J. Chem. Eng. Data 59, 2389–2407 (2014)
Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H2SO4(aq) at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)
Zeleznik, F.J.: Thermodynamic properties of the aqueous sulfuric acid system to 350 K. J. Phys. Chem. Ref. Data 20, 1157–1200 (1991)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Schoenberg, M.R., Yen, SC. & Chapman, T.W. Thermodynamics of Aqueous Sulfuric Acid up to 175 °C. J Solution Chem 44, 1339–1357 (2015). https://doi.org/10.1007/s10953-015-0350-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-015-0350-0