Skip to main content
Log in

Thermodynamics of Aqueous Sulfuric Acid up to 175 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The potential of a lead amalgam–lead sulfate electrode has been measured relative to a hydrogen electrode in sulfuric acid at temperatures up to 175 °C to obtain the standard reduction potential of the electrode and activity coefficients of sulfuric acid up to 0.2 mol·kg−1. The resulting values are in agreement with earlier published values for 25 and 50 °C and provide new results at elevated temperatures. It was found that the amalgam electrode was not stable in more concentrated acid, but it is suggested that the new results may be used to calibrate a more practical reference electrode system such as lead oxide–lead sulfate for use in studies of more complex sulfate solutions at elevated temperatures and at higher acid concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller, T.L.: Sulfuric acid and sulfur trioxide. In: Mark, H.F., et al. (eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 5th edn. Wiley, New York (2006). doi:10.1002/0471238961.1921120613211212.a01.pub2

    Google Scholar 

  2. Meddings, B., Evans, D.J.I.: The changing role of hydrometallurgy. Can. Mining Metall. Bull. 64, 48–57 (1971)

    CAS  Google Scholar 

  3. Pavlov, D.: Lead-Acid Batteries: Science and Technology. Elsevier, Oxford (2011)

    Google Scholar 

  4. Chenier, P.J.: Sulfuric acid and its derivatives. Survey of Industrial Chemistry (Chap. II), 3rd edn, pp. 23–57. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Schlesinger, M., Paunovic, M.: Modern Electroplating. Wiley, New York (2011)

    Google Scholar 

  6. Greeley, R.S., Smith, W.T., Stoughton, R.W., Lietzke, M.H.: Electromotive force studies in aqueous solutions at elevated temperatures I. The standard potential of the silver–silver chloride electrode. J. Phys. Chem. 64, 652–657 (1960)

    Article  CAS  Google Scholar 

  7. Ives, D.J.G., Janz, G.J.: Reference Electrodes, Theory and Practice. Academic Press, New York (1969)

    Google Scholar 

  8. Bates, R.G., Edelstein, M., Acree, S.F.: Reproducibility of the lead electrode and the electromotive force of the lead stick-lead amalgam cell at 0 to 60 °C. J. Res. Natl. Bur. Stand. 36, 159–170 (1946)

    Article  CAS  Google Scholar 

  9. Fusi, P., Mussini, P.R.: The lead amalgam/lead sulfate electrode redesigned and reassessed. J. Solution Chem. 26, 337–352 (1997)

    Article  CAS  Google Scholar 

  10. Mussini, P., Mussini, T.: Sulfate-sensing electrodes. The lead-amalgam/lead sulfate electrode (IUPAC Technical Report). Pure Appl. Chem. 74, 593–600 (2002)

    Article  CAS  Google Scholar 

  11. Lewis, G.N., Randall, M.R., Pitzer, K.S., Brewer, L.: Thermodynamics. McGraw-Hill, New York (1961)

    Google Scholar 

  12. Guggenheim, E.A.: Thermodynamics. North Holland Publishing, Amsterdam (1959)

    Google Scholar 

  13. Schoenberg, M.R.: Development of a sulfate-reversible reference electrode. Ph.D. Thesis, University of Wisconsin-Madison (1974)

  14. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths, London (1959)

    Google Scholar 

  15. Greeley, R.S.: Thermodynamic properties of dilute aqueous hydrochloric acid solutions at elevated temperatures from electromotive force measurements. Ph.D. Thesis, University of Tennessee (1959)

  16. Åkerlöf, G.C., Oshry, H.I.: The dielectric constant of water at high temperature and in equilibrium with its vapor. J. Am. Chem. Soc. 72, 2844–2847 (1950)

    Article  Google Scholar 

  17. Lietzke, M.H., Stoughton, R.W., Young, T.F.: The bisulfate acid constant from 25 to 225°C as computed from solubility data. J. Phys. Chem. 65, 2247–2249 (1961)

    Article  CAS  Google Scholar 

  18. Purdum, R.B., Rutherford, H.A.: The solubilities of sparingly soluble salts using large volumes of solvent I. The solubility of lead sulfate. J. Am. Chem. Soc. 55, 3221–3223 (1933)

    Article  CAS  Google Scholar 

  19. Huybrechts, R., Ramelot, H.: Solubilite du sulfate plombique dans l’eau et dans des solutions de quelques electrolytes. Bull. Soc. Chim. Belg. 36, 239–260 (1927)

    Google Scholar 

  20. Craig, D.N., Vinal, C.W.: Solubility of lead sulfate in solutions of sulfuric acid, determined by dithizone with a photronic cell. J. Res. Natl. Bur. Stand. 22, 55–71 (1939)

    Article  CAS  Google Scholar 

  21. Pitzer, K.S.: Thermodynamic properties of aqueous solutions of bivalent sulfates. J. Chem. Soc. Faraday Trans. I 68, 101–113 (1972)

    Article  CAS  Google Scholar 

  22. Liu, H., Papangelakis, V.G.: Solubility of Pb(II) and Ni(II) in mixed sulfate–chloride solutions with the mixed solvent electrolyte model. Ind. Eng. Chem. Res. 45, 39–47 (2006)

    Article  CAS  Google Scholar 

  23. Helgeson, H.G.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Res. 267, 729–804 (1969)

    CAS  Google Scholar 

  24. Clever, H.L., Johnston, F.J.: The solubility of some sparingly soluble salts: an evaluation of the solubility in water and aqueous electrolyte solutions. J. Phys. Chem. Ref. Data 9, 751–784 (1980)

    Article  CAS  Google Scholar 

  25. Puigdomenech, I., Rard, J.A., Plyasunov, A.V., Grenthe, I.: Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe, I., Puigdomenech, I. (eds.) Modelling in Aquatic Systems (Chap. X), pp. 427–493. OECD Publications, Paris (1997)

    Google Scholar 

  26. Lewis, D.: Studies of redox equilibria at elevated temperatures I. Arkiv für Kemi 32, 385–404 (1970)

    CAS  Google Scholar 

  27. Criss, C.M., Cobble, J.W.: The thermodynamic properties of high temperature solutions V. The calculation of ionic heat capacities up to 200 °C. Entropy and heat capacity above 200 °C. J. Am. Chem. Soc. 86, 5390–5393 (1964)

    Article  CAS  Google Scholar 

  28. Bates, R.G.: Electrometric pH Determination, p. 42. Wiley, New York (1959)

    Google Scholar 

  29. Daniels, F., Mathews, J.H., Williams, J.W., Bender, P., Alberty, R.D.: Experimental Physical Chemistry, 5th edn, p. 177. McGraw-Hill, New York (1956)

    Google Scholar 

  30. Feltam, A.M., Spiro, M.: Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971)

    Article  Google Scholar 

  31. Predel, B.: Mercury-lead. In: Madelung, O. (ed.) Phase Equilibria of Binary Alloys, Group IV: Subvolume G. The Landolt-Bornstein Database, vol. 5. Springer Materials, Heidelberg (2013)

    Google Scholar 

  32. Puschin, N.A.: Uber die legierungen des quecksilbers. Z. Anorg. Allg. Chem. 36, 201–254 (1903)

    Article  CAS  Google Scholar 

  33. Shrawder, J., Cowpertwaite, I.A.: The activity coefficient of sulfuric acid at temperatures from 0 to 50 °C. J. Am. Chem. Soc. 56, 2340–2345 (1934)

    Article  CAS  Google Scholar 

  34. Covington, A.K., Dobson, J.V., Wynne-Jones, W.F.K.: Stoichiometric activity coefficients of sulfuric acid and the standard potential of the lead dioxide/lead sulfate and mercury/mercurous sulfate electrodes at 25 °C. J. Chem. Soc. Trans. Faraday Soc. I 61, 2050–2056 (1965)

    Article  CAS  Google Scholar 

  35. Stokes, R.H.: The measurement of vapor pressure of aqueous solutions by the bi-thermal equilibration through the vapor phase. J. Am. Chem. Soc. 69, 1291–1296 (1947)

    Article  CAS  Google Scholar 

  36. Cowperthwaite, I.A., Shrawder, J.: The partial molal heat of dilution of sulfuric acid from electromotive force measurements. J. Am. Chem. Soc. 56, 2345–2347 (1934)

    Article  CAS  Google Scholar 

  37. Staples, B.R.: Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K. J. Phys. Chem. Ref. Data 10, 779–797 (1981)

    Article  CAS  Google Scholar 

  38. Harned, H.S., Hamer, W.J.: The thermodynamics of aqueous sulfuric acid from electromotive force measurements. J. Am. Chem. Soc. 57, 27–33 (1935)

    Article  CAS  Google Scholar 

  39. Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XVII—Revision of data for all 2:1 and 2:2 electrolytes at 25 °C. J. Chem. Soc. Trans. Faraday Soc. I 44, 295–307 (1948)

    Article  CAS  Google Scholar 

  40. Gardner, W.L., Mitchell, R.E., Cobble, J.W.: Thermodynamic properties of high temperature aqueous solutions X. Electrode potentials of sulfate-ion electrodes from 0 to 100 °C. Activity coefficient and the entropy of aqueous sulfuric acid. J. Phys. Chem. 73, 2021–2024 (1969)

    Article  CAS  Google Scholar 

  41. Staples, B.R., Wobbeking, T.F.: A Compilation of Thermodynamic and Transport Properties of Aqueous Sulfuric Acid. National Bureau of Standards, NBSIR-81-2276, Washington, DC (1980)

  42. Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic properties of 0–6 mol kg−1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. I 90, 1875–1894 (1994)

    Article  CAS  Google Scholar 

  43. Clegg, S.L., Brimblecombe, P.: Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg−1 aqueous sulfuric acid from <200 to 328 K. J. Chem. Eng. Data 40, 43–64 (1995)

    Article  CAS  Google Scholar 

  44. Sippola, H., Taskinen, P.: Thermodynamic properties of aqueous sulfuric acid. J. Chem. Eng. Data 59, 2389–2407 (2014)

    Article  CAS  Google Scholar 

  45. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H2SO4(aq) at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)

    Article  CAS  Google Scholar 

  46. Zeleznik, F.J.: Thermodynamic properties of the aqueous sulfuric acid system to 350 K. J. Phys. Chem. Ref. Data 20, 1157–1200 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Chapman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoenberg, M.R., Yen, SC. & Chapman, T.W. Thermodynamics of Aqueous Sulfuric Acid up to 175 °C. J Solution Chem 44, 1339–1357 (2015). https://doi.org/10.1007/s10953-015-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0350-0

Keywords

Navigation