Skip to main content
Log in

Effect of Solvent Activity on Solute Association: The Formation of Aqueous Nickel(II) Chloride Complexes Studied by UV–Vis and EXAFS Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Water activity is generally considered to affect ionic association in aqueous electrolyte solutions; however, it is usually ignored when the association reactions or constants are discussed. In this work, the effect of water activity on the association reaction \( {\text{Ni}}_{{ ( {\text{aq}})}}^{2 + } + n{\text{Cl}}_{{ ( {\text{aq)}}}}^{ - } \rightleftharpoons {\text{NiCl}}_{{n{\text{ (aq)}}}}^{2 - n} \) was investigated by EXAFS and UV–Vis spectroscopy measurements on NiCl2 aqueous solutions at room temperature with constant Cl/Ni2+ ratio (~66) and various water activities; the latter were adjusted by adding MgCl2 and Mg(ClO4)2. Both the EXAFS and the UV–Vis spectra measurements indicated that the extent of Ni–Cl association increases in decreasing water activity environments, independent on the Cl/Ni2+ ratio. Thus, the effect of water activity on the ionic association should not be ignored and more emphasis should be paid on it, especially, when the water activity is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, X., Chen, A., Zhao, Z.W., Liu, X., Shi, Y., Wang, D.: Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy 133, 106–110 (2013)

    Article  CAS  Google Scholar 

  2. Lee, C.I., Yang, W.F., Hsieh, C.I.: Removal of copper(II) by manganese-coated sand in liquid fluidized-bed reactor. J. Hazard. Mater. 114, 45–51 (2004)

    Article  CAS  Google Scholar 

  3. Waizumi, K., Kouda, T., Tanio, A., Fukushima, N., Ohtaki, H.: Structural studies on saturated aqueous solutions of manganese(II), cobalt(II), and nickel(II) chlorides by X-ray diffraction. J. Solution Chem. 28, 83–100 (1999)

    Article  CAS  Google Scholar 

  4. Zhang, N., Zhou, Q., Yin, X., Zeng, D.: Trace amounts of aqueous copper(II) chloride complexes in hypersaline solutions: spectrophotometric and thermodynamic studies. J. Solution Chem. 43, 326–339 (2014)

    Article  CAS  Google Scholar 

  5. Zhang, N., Brugger, J., Etschmann, B., Ngothai, Y., Zeng, D.W.: Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV–Vis spectroscopic study of Ni(II) in the NiCl2–MgCl2–H2O system. Plos One 10, e0119805 (2015)

    Article  Google Scholar 

  6. Tian, Y., Etschmann, B., Liu, W., Borg, S., Mei, Y., Testemale, D., O’Neill, B., Rae, N., Sherman, D.M., Ngothai, Y., Johannessen, B., Chris, G., Brugger, J.: Speciation of nickel(II) chloride complexes in hydrothermal fluids: in situ XAS study. Chem. Geol. 334, 345–363 (2012)

    Article  CAS  Google Scholar 

  7. Liu, W., Migdisov, A., Williams-Jones, A.: The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: results of UV–Visible spectroscopic experiments. Geochim. Cosmochim. Acta 94, 276–290 (2012)

    Article  CAS  Google Scholar 

  8. Xia, F., Zeng, D.W., Yi, H.B., Fang, C.: Direct contact versus solvent-shared ion pairs in saturated NiCl2 aqueous solution: a DFT, CPMD, and EXAFS investigation. J. Phys. Chem. A 117, 8468–8476 (2013)

    Article  CAS  Google Scholar 

  9. Bjerrum, J.: Estimation of small stability constants in aqueous solution. The nickel(II)–chloride system. Acta Chem. Scand. A 42, 714–716 (1988)

    Article  Google Scholar 

  10. Libuś, Z., Tialowska, H.: Stability and nature of complexes of the type MCl+ in aqueous solution (M = Mn Co, Ni and Zn). J. Solution Chem. 4, 1011–1022 (1975)

    Article  Google Scholar 

  11. Liu, W., Etschmann, B., Brugger, J., Spiccia, L., Foran, G., Mclnnes, B.: UV–Vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90 °C. Chem. Geol. 231, 326–349 (2006)

    Article  CAS  Google Scholar 

  12. Powell, K.J., Brown, P,L., Byrne, R.H., Gajad, T., Hefter, G., Sjoberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands part 2: The Cu2+ – OH,\({\text{ Cl}}^{ - } ,\;{\text{CO}}_{3}^{2 - } ,\;{\text{SO}}_{4}^{2 - } ,\;{\text{and}}\;{\text{PO}}_{4}^{3 - } \) systems. Pure Appl. Chem. 79, 895–950 (2007)

  13. Xia, F., Zeng, D., Yi, H., Fang, C.: Direct contact versus solvent-shared ion pairs in saturated NiCl2 aqueous solution: a DFT, CPMD, and EXAFS investigation. J. Phys. Chem. A 117, 8468–8476 (2013)

    Article  CAS  Google Scholar 

  14. Zhou, Q., Zeng, D.W., Voigt, W.: Thermodynamic modeling of salt-water systems up to saturation concentrations based on solute speciation: CuCl2 − MCl n  − H2O at 298 K (M = Li, Mg, Ca). Fluid Phase Equilib. 322–323, 30–40 (2012)

    Article  Google Scholar 

  15. Stokes, R.H., Levien, B.J.: The osmotic and activity coefficients of zinc nitrate, zinc perchlorate and magnesium perchlorate. Transference numbers in zinc perchlorate solutions. J. Am. Chem. Soc. 68, 333–337 (1946)

    Article  CAS  Google Scholar 

  16. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl2 solution at 25 °C. J. Chem. Eng. Data 26, 38–43 (1981)

    Article  CAS  Google Scholar 

  17. Blandamer, M.J., Engberts, J.B.F.N., Gleeson, P.T., Reis, J.C.R.: Activity of water in aqueous systems; A frequently neglected property. Chem. Soc. Rev. 34, 440–458 (2005)

    Article  CAS  Google Scholar 

  18. Borodzinski, J.J., Galus, Z.: Influence of water activity on the Ni(II)/Ni(Hg) electrode reaction in concentrated Ca(ClO4)2 solutions in the temperature range 20–185 °C. J. Electroanal. Chem. 135, 221–241 (1982)

    Article  CAS  Google Scholar 

  19. Marczak, S., Wrona, P.K., Galus, Z.: Kinetics and mechanism of the electrode reactions of the Cr2+ ¦ Cr(Hg) system in lithium bromide + lithium perchlorate solutions of decreased water activity. J. Electroanal. Chem. 436, 79–84 (1997)

    Article  CAS  Google Scholar 

  20. Nosal-Wiercinska, A.: The kinetics and mechanism of the electroreduction of Bi(III) ions from chlorates(VII) with varied water activity. Electrochim. Acta 55, 5917–5921 (2010)

    Article  CAS  Google Scholar 

  21. Nosal-Wiercinska, A.: The catalytic influence of methionine on the electroreduction of Bi(III) ions in chlorates(VII) solutions with varied water activity. J. Electroanal. Chem. 654, 66–71 (2011)

    Article  CAS  Google Scholar 

  22. Nosal-Wiercinska, A.: Electrochemical and thermodynamic study of the electroreduction of Bi(III) ions in the presence of cystine in solutions of different water activity. J. Electroanal. Chem. 681, 103–108 (2012)

    Article  CAS  Google Scholar 

  23. Nosal-Wiercinska, A.: The role of active complexes in the multistep process of Bi(III) ion electroreduction in chlorate(VII) solutions with varied water activity in the presence of cystine. Electrochim. Acta 92, 397–403 (2013)

    Article  CAS  Google Scholar 

  24. Nosal-Wiercinska, A.: Influence of temperature on the reduction kinetics of Bi(III) ion in the presence of cystine in chlorate(VII) solutions of decreased water activity. Cent. Eur. J. Chem. 12, 213–219 (2014)

    Article  CAS  Google Scholar 

  25. Callahan, K.M., Casillas-Ituarte, N.N., Roeselova, M., Allen, H.C., Tobias, D.J.: Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions. J. Phys. Chem. A 114, 5141–5148 (2010)

    Article  CAS  Google Scholar 

  26. Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of magnesium(II) hydration. J. Phys. Chem. A 102, 9933–9943 (1998)

    Article  CAS  Google Scholar 

  27. Berman, H.A., Strengle, T.R.: Contact ion pairing of the perchlorate ion. A chlorine-35 nuclear magnetic resonances study. I. Solutions in pure solvents. J. Phys. Chem. 79, 1001–1005 (1975)

    Article  CAS  Google Scholar 

  28. Lindqvist-Reis, P., Munoz-Paez, A., Diaz-Moreno, S., Pattanaik, S., Persson, I., Sandstrom, M.: The structure of the hydrated gallium(III), indium(III), and chromium(III) ions in aqueous solution. A large angle X-ray scattering and EXAFS study. Inorg. Chem. 37, 6675–6683 (1998)

    Article  CAS  Google Scholar 

  29. Proux, O., Biquard, X., Lahera, E., Menthonnex, J.-J., Prat, A., Ulrich, O., Soldo, Y., Trévisson, P., Kapoujyan, G., Perroux, G., Taunier, P., Grand, D., Jeantet, P., Deleglise, M., Roux, J.-P., Hazemann, J.-L.: FAME: a new beamline for X-ray absorption investigations of very-diluted systems of environmental, material and biological interests. Phys. Scr. 115, 970–973 (2005)

    Article  Google Scholar 

  30. Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005)

    Article  CAS  Google Scholar 

  31. Ankudinov, A., Ravel, B., Rehr, J., Conradson, S.: Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998)

    Article  CAS  Google Scholar 

  32. Newsome, J.R., Neilson, G.W., Enderby, J.E.: Ni2+ hydration in perchlorate and chloride solutions. Chem. Phys. Lett. 82, 399–401 (1981)

    Article  CAS  Google Scholar 

  33. Hefter, G.: When spectroscopy fails: the measurement of ion pairing. Pure Appl. Chem. 78, 1571–1586 (2006)

    Article  CAS  Google Scholar 

  34. Li, C.X., Park, S.B., Kim, J.S., Lee, H.: A new generalized model for predicting the density of single- and mixed-electrolyte solutions. Fluid Phase Equilib. 145, 1–14 (1998)

    Article  CAS  Google Scholar 

  35. Brugger, J.: BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution. Comput. Geosci. 33, 248–261 (2007)

    Article  Google Scholar 

  36. Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 49, 612–616 (1977)

    Article  CAS  Google Scholar 

  37. Brugger, J., Mcphail, D.C., Black, J., Spiccia, L.: Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)–LiCl–H2O system between 25 and 90 °C. Geochim. Cosmochim. Acta 65, 2691–2708 (2001)

    Article  CAS  Google Scholar 

  38. Xia, F., Yi, H.B., Zeng, D.W.: Hydrates of Cu2+ and CuCl+ in dilute aqueous solution: a density functional theory and polarized continuum model investigation. J. Phys. Chem. A 114, 8406–8416 (2010)

    Article  CAS  Google Scholar 

  39. Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)

    Article  CAS  Google Scholar 

  40. Wang, P., Anderko, A., Young, R.D.: A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilib. 203, 141–176 (2002)

    Article  CAS  Google Scholar 

  41. Wang, P., Springer, R.D., Anderko, A., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equilib. 222–223, 11–17 (2004)

    Article  Google Scholar 

  42. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  43. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  44. Gruszkiewicz, M.G., Palmer, D.A., Springer, R.D., Wang, P., Anderko, A.: Phase behavior of aqueous Na-K-Mg-Ca-Cl-NO3 mixtures: isopiestic measurements and thermodynamic modeling. J. Solution Chem. 36, 723–765 (2007)

    Article  CAS  Google Scholar 

  45. Lepeshkhov, I.N., Leboshchina, V.I.: Solubility in a quaternary mutual aqueous system of chlorides and perchlorates of magnesium and ammonium at 25 °C. Uch. Zap. Yaroslav. Gos. Pedagog. Inst. 59, 48–66 (1966)

    Google Scholar 

  46. Karnaukhov, A.S., Kudryakova, S.A.: Solubility of MgCl2–Mg(ClO4)2–H2O system at 25 °C. Uch. Zap. Yaroslav. Gos. Pedagog. Inst. 59, 119–136 (1966)

    Google Scholar 

  47. Wang, W., Zeng, D.W., Yin, X., Chen, Q.: Prediction and measurement of gypsum solubility in the systems CaSO4 + HMSO4 + H2SO4 + H2O (HM = Cu, Zn, Ni, Mn) at 298.15 K. Ind. Eng. Chem. Res. 51, 5124–5134 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Basic Research Program of China (No. 2014CB643401), the National Natural Science Foundation of China (Nos.: 20773036, 51134007 and 21463010), and the China Scholarship Council (No. 201306370118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhang or Dewen Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zeng, D., Brugger, J. et al. Effect of Solvent Activity on Solute Association: The Formation of Aqueous Nickel(II) Chloride Complexes Studied by UV–Vis and EXAFS Spectroscopy. J Solution Chem 44, 1320–1338 (2015). https://doi.org/10.1007/s10953-015-0334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0334-0

Keywords

Navigation