Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 824–837 | Cite as

Acoustic and Volumetric Properties of Diluted Solutions of Water in Ionic Liquids

  • Justyna Skowronek
  • Monika Geppert-Rybczyńska
  • Johan Jacquemin
  • Peter Goodrich
  • Jorge Alvarez Vicente
  • Mirosław Chorążewski
  • Sylwia Jężak
  • Michał Zorębski
  • Edward Zorębski
  • Monika Żarska
  • Wojciech Kaca
  • Paweł Berdyczko
  • Marzena Dzida
Article

Abstract

Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.

Keywords

Ionic liquids Speed of sound Adiabatic compressibility Apparent and partial molar volume Apparent and partial molar compressibility 

Supplementary material

10953_2015_327_MOESM1_ESM.pdf (426 kb)
Electronic supplementary material: Figures S1– S13 contain 1H and 13C NMR spectra and TGA analysis of 1-propyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C3mim][NTf2] and comparisons of apparent and partial molar volumes and adiabatic compressibilities of water in each ILs separately. (PDF 426 kb)

References

  1. 1.
    Yau, H.M., Chan, S.J., George, S.R.D., Hook, J.M., Croft, A.K., Harper, J.B.: Ionic liquids: just molten salts after all? Molecules 14, 2521–2534 (2009)CrossRefGoogle Scholar
  2. 2.
    Wilkes, J.S.: A short history of ionic liquids – from molten salts to neoteric solvents. Green Chem. 4, 73–80 (2002)CrossRefGoogle Scholar
  3. 3.
    Rogers, R.D., Seddon, K.R.: Ionic liquids – solvents of the future? Science 302, 792–793 (2003)CrossRefGoogle Scholar
  4. 4.
    Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn 37, 525–535 (2005)CrossRefGoogle Scholar
  5. 5.
    Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley, Weinheim (2008)Google Scholar
  6. 6.
    Kadokawa, J. (Ed.) Ionic Liquids – New Aspects For The Future. InTech-Open Access Company. http://www.intechopen.com/books/ionic-liquids-new-aspects-for-the-future (2013). Accessed 23 Jan 2013
  7. 7.
    Seddon, K.R., Stark, A., Torres, M.-J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)CrossRefGoogle Scholar
  8. 8.
    Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)CrossRefGoogle Scholar
  9. 9.
    Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: Are alkylsulfates-based protic and aprotic ionic liquids stable with water and alcohols? A thermodynamic approach. J. Phys. Chem. B 117, 1938–1949 (2013)CrossRefGoogle Scholar
  10. 10.
    Schröder, U., Wadhawan, J.D., Compton, R.G., Marken, F., Suarez, P.A.Z., Consorti, C.S., de Souarez, R.F., Dupont, J.: Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafuoroborate, 1-butyl-3-methylimidazolium tetrafuoroborate and hexafuorophosphate ionic liquids. New J. Chem. 24, 1009–1015 (2000)CrossRefGoogle Scholar
  11. 11.
    Kohno, Y., Ohno, H.: Ionic liquid/water mixtures: from hostility to conciliation. Chem. Commun. 48, 7119–7130 (2012)CrossRefGoogle Scholar
  12. 12.
    Kerlé, D., Ludwig, R., Paschek, D.: The influence of water on the solubility of carbon dioxide in imidazolium based ionic liquids. Z. Phys. Chem. 227, 167–176 (2013)CrossRefGoogle Scholar
  13. 13.
    Widegren, J.A., Magee, J.W.: Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J. Chem. Eng. Data 52, 2331–2338 (2007)CrossRefGoogle Scholar
  14. 14.
    Chirico, R.D., Diky, V., Magee, J.W., Frenkel, M., Marsh, K.N.: Thermodynamic and thermophysical properties of the reference ionic liquid: 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC technical report). Pure Appl. Chem. 81, 791–828 (2009)CrossRefGoogle Scholar
  15. 15.
    Klomfar, J., Součková, M., Pátek, J.: PρT measurements for 1-alkyl-3-methylimidazolium-based ionic liquids with tetrafluoroborate and a trifluoromethanesulfonate Anion. J. Chem. Eng. Data 57, 708–720 (2012)CrossRefGoogle Scholar
  16. 16.
    Freire, M.G., Carvalho, P.J., Gardas, R.L., Marrucho, I.M., Santos, L.M.N.B.F., Coutinho, J.A.P.: Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids. J. Phys. Chem. B 112, 1604–1610 (2008)CrossRefGoogle Scholar
  17. 17.
    Freire, M.G., Santos, L.M.N.B.F., Fernandes, A.M., Coutinho, J.A.P., Marrucho, I.M.: An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilib. 261, 449–454 (2007)CrossRefGoogle Scholar
  18. 18.
    Řehák, K., Morávek, P., Strejc, M.: Determination of mutual solubilities of ionic liquids and water. Fluid Phase Equilib. 316, 17–25 (2012)CrossRefGoogle Scholar
  19. 19.
    Vranes, M., Dozic, S., Djeric, V., Gadzuric, S.: Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl- sulfonyl)imide. J. Chem. Eng. Data 57, 1072–1077 (2012)CrossRefGoogle Scholar
  20. 20.
    Geppert-Rybczyńska, M., Lehmann, J.K., Heintz, A.: Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile. J. Chem. Thermodyn 71, 171–181 (2014)CrossRefGoogle Scholar
  21. 21.
    Domańska, U., Królikowska, M.: Effect of temperature and composition on the surface tension and thermodynamic properties of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate with alcohols. J. Colloid Interface Sci. 348, 661–667 (2010)CrossRefGoogle Scholar
  22. 22.
    Masterton, W.L., Seiler, H.K.: Apparent and partial molal volumes of water in organic solvents. J. Phys. Chem. 72, 4257–4262 (1968)CrossRefGoogle Scholar
  23. 23.
    Sakurai, M., Nakagawa, T.: Densities of dilute solutions of water in benzene and in methanol at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Partial molar volumes V w and values of ∂V w/∂T for water in benzene and in methanol. J. Chem. Thermodynamics 14, 269–274 (1982)CrossRefGoogle Scholar
  24. 24.
    Żak, A., Dzida, M., Zorębski, M., Ernst, S.: A high pressure system for measurements of the speed of sound in liquids. Rev. Sci. Instrum. 71, 1756–1765 (2000)CrossRefGoogle Scholar
  25. 25.
    Dzida, M., Chorążewski, M., Zorębski, M., Mańka, R.: Modification of a high pressure device for speed of sound measurements in liquids. J. Physique IV 137, 203–207 (2006)Google Scholar
  26. 26.
    Zorębski, E., Geppert-Rybczyńska, M., Zorębski, M.: Acoustics as a tool for better characterization of ionic liquids: a comparative study of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room temperature ionic liquid. J. Phys. Chem. B 117, 3867–3876 (2013)CrossRefGoogle Scholar
  27. 27.
    Gómez, E., Calvar, N., Macedo, E.A., Domínguez, A.: Effect of the temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and characterization of its binary mixtures with alcohols. J. Chem. Thermodyn 45, 9–15 (2012)CrossRefGoogle Scholar
  28. 28.
    Królikowska, M., Hofman, T.: Densities, isobaric expansivities and isothermal compressibilities of the thiocyanate-based ionic liquids at temperatures (298.15–338.15 K) and pressures up to 10 MPa. Thermochim. Acta 530, 1–6 (2012)CrossRefGoogle Scholar
  29. 29.
    Freire, M.G., Teles, A.R.R., Rocha, M.A.A., Schröder, B., Neves, C.M.S.S., Carvalho, P.J., Evtuguin, D.V., Santos, L.M.N.B.F., Coutinho, J.A.P.: Thermophysical characterization of ionic liquids able to dissolve biomass. J. Chem. Eng. Data 56, 4813–4822 (2011)CrossRefGoogle Scholar
  30. 30.
    Ficke, L.E., Novak, R.R., Brennecke, J.F.: Thermodynamic and thermophysical properties of ionic liquid + water systems. J. Chem. Eng. Data 55, 4946–4950 (2010)CrossRefGoogle Scholar
  31. 31.
    Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012)CrossRefGoogle Scholar
  32. 32.
    Douhéret, G., Davis, M.I.: Measurements, analysis, and utility of excess molar –(∂V/∂p)S. Chem. Soc. Rev. 22, 43–50 (1993)CrossRefGoogle Scholar
  33. 33.
    Douhéret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2, 148–161 (2001)CrossRefGoogle Scholar
  34. 34.
    Pečar, D., Doleček, V.: Volumetric properties of ethanol–water mixtures under high temperatures and pressures. Fluid Phase Equilib. 230, 36–44 (2005)CrossRefGoogle Scholar
  35. 35.
    Roth, Ch., Rose, A., Ludwig, R.: Ionic liquids can be more hydrophobic than chloroform or benzene. ChemPhysChem 13, 3102–3105 (2012)CrossRefGoogle Scholar
  36. 36.
    Perron, G., Hardy, A., Justice, J.C., Desnoyers, J.E.: Model system for concentrated electrolyte solutions: thermodynamic and transport properties of ethylammonium nitrate in acetonitrile and in water. J. Solution Chem. 22, 1159–1178 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Justyna Skowronek
    • 1
  • Monika Geppert-Rybczyńska
    • 1
  • Johan Jacquemin
    • 2
  • Peter Goodrich
    • 2
  • Jorge Alvarez Vicente
    • 2
  • Mirosław Chorążewski
    • 1
  • Sylwia Jężak
    • 1
  • Michał Zorębski
    • 1
  • Edward Zorębski
    • 1
  • Monika Żarska
    • 1
  • Wojciech Kaca
    • 3
  • Paweł Berdyczko
    • 3
  • Marzena Dzida
    • 1
  1. 1.Institute of ChemistryUniversity of SilesiaKatowicePoland
  2. 2.The QUILL Research Centre, School of Chemistry and Chemical EngineeringQueen’s University of BelfastBelfastUK
  3. 3.DonservWarsawPoland

Personalised recommendations