Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 754–768 | Cite as

Thermochemistry of Ammonium Based Ionic Liquids: Thiocyanates—Experiments and Computations

  • Andrei V. Yermalayeu
  • Dzmitry H. Zaitsau
  • Vladimir N. Emel’yanenko
  • Sergey P. Verevkin


Molar enthalpies of solution of tetra-n-butylammonium thiocyanate [N(Bu)4][SCN] and tetra-n-pentylammonium thiocyanate [N(Pe)4][SCN] in water were measured by using solution calorimetry. The enthalpy of combustion of [N(Bu)4][SCN] was measured by using rotation bomb combustion calorimetry and the enthalpy of formation of this ionic liquids was derived. The thermal behavior of [N(Bu)4][SCN] was studied using differential scanning calorimetry. Quantum-chemical calculations of the molar enthalpy of formation in the gaseous phase have been performed for the series [N(R)4][SCN] with R = (Me, Et, n-Bu, and n-Pe) using the G3MP2 level of theory. Experimental and calculated values of the enthalpies of formation are in agreement within the boundaries of the experimental uncertainties.


Ionic liquids Solution calorimetry Combustion calorimetry Enthalpy of formation Enthalpy of solution Quantum-chemical calculations 



We are grateful to Prof. Heiko K. Cammenga (T. U. Braunschweig) for donation the solution calorimeter to the University of Rostock after his retirement. This work has been supported by the German Science Foundation (DFG) in the framework of the priority program SPP 1708 “Material Synthesis Near Room Temperature”. This work has been partly supported by the Russian Government Program of Competitive Growth of Kazan Federal University.


  1. 1.
    Stojanovic, A., Morgenbesser, C., Kogelnig, D., Krachler, R., Keppler, B.K.: Quaternary ammonium and phosphonium ionic liquids in chemical and environmental engineering. In: Kokorin, A. (ed.) Ionic Liquids: Theory, Properties, New Approaches. InTech (2011).
  2. 2.
    Earle, M.J., Seddon, K.R.: Ionic liquids: green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)CrossRefGoogle Scholar
  3. 3.
    Sabbah, R., An, X.W., Chickos, J.S., Leitao, M.L.P., Roux, M.V., Torres, L.A.: Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93–204 (1999)CrossRefGoogle Scholar
  4. 4.
    Gobble, C., Chickos, J.S., Verevkin, S.P.: Vapor pressures and vaporization enthalpies of a series of dialkyl phthalates by correlation gas chromatography. J. Chem. Eng. Data 59, 1353–1365 (2014)CrossRefGoogle Scholar
  5. 5.
    Zaitsau, D.H., Emel’yanenko, V.N., Verevkin, S.P., Heintz, A.: Sulfur-containing ionic liquids. Rotating-bomb combustion calorimetry and first-principles calculations for 1-ethyl-3-methylimidazolium thiocyanate. J. Chem. Eng. Data 55, 5896–5899 (2010)CrossRefGoogle Scholar
  6. 6.
    Hubbard, W.N., Scott, D.W., Waddington, G.: Experimental Thermochemistry. Rossini, F.D. (ed.) Interscience, New York (1956)Google Scholar
  7. 7.
    Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS Tables of Chemical Thermodynamic Properties (NBS Technical Note 270). J. Phys. Chem. Ref. Data 11(2), 1–392 (1982)Google Scholar
  8. 8.
    Wieser, M.E., Holden, N., Coplen, T.B., Böhlke, J.K., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Loss, R.D., Meija, J., Hirata, T., Prohaska, T., Schoenberg, R., O’Connor, G., Walczyk, T., Yoneda, S., Zhu, X.-K.: Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl. Chem. 85, 1047–1078 (2013)CrossRefGoogle Scholar
  9. 9.
    Verevkin, S.P., Zaitsau, D.H., Emelyanenko, V.N., Heintz, A.: A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J. Phys. Chem. B 115, 12889–12895 (2011)CrossRefGoogle Scholar
  10. 10.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian, 9th edn., Gaussian, Inc., Wallingford (2009)Google Scholar
  11. 11.
    Emel’yanenko, V.N., Verevkin, S.P., Heintz, A.: The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J. Am. Chem. Soc. 129, 3930–3937 (2007)CrossRefGoogle Scholar
  12. 12.
    Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V., Pople, J.A.: Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys. 110, 4703–4709 (1999)CrossRefGoogle Scholar
  13. 13.
    McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)Google Scholar
  14. 14.
    Cox, J.D., Wagman, D.D., Medvedev, V.A. (eds.): CODATA Key Values for Thermodynamics. Hemisphere, New York (1989)Google Scholar
  15. 15.
    Verevkin, S.P.: Emel’yanenko, V.N., Krossing. I., Kalb, R.: thermochemistry of ammonium based ionic liquids: tetra-alkyl-ammonium nitrates – Experiments and computations. J. Chem. Thermodyn. 51, 101–117 (2012)CrossRefGoogle Scholar
  16. 16.
    Glushko, V.P. (ed): Thermal Constants of Substances. VINITI, Moscow. Online version of the database: (in Russian)
  17. 17.
    Olofsson, G.: Assignment of uncertainties. In: Sunner, S., Mansson, M. (eds.) Experimental Chemical Themodynamics, Vol. 1, Combustion Calorimetry. IUPAC–Pergamon Press, Oxford (1979)Google Scholar
  18. 18.
    Goncalves, E.M., Agapito, F., Almeida, T.S., Simoes, J.A.M.: Enthalpies of formation of dihydroxybenzenes revisited: combining experimental and high-level ab initio data. J. Chem. Thermodyn. 73, 90–96 (2014)CrossRefGoogle Scholar
  19. 19.
    Hukkerikar, A.S., Meier, R.J., Sin, G., Gani, R.: A method to estimate the enthalpy of formation of organic compounds with chemical accuracy. Fluid Phase Equilib. 348, 23–32 (2013)CrossRefGoogle Scholar
  20. 20.
    Verevkin, S.P., Sazonova, A.Yu., Emel’yanenko, V.N., Zaitsau, Dz.H., Varfolomeev, M.A., Solomonov, B.N., Zherikova, K.V.: Thermochemistry of halogen-substituted methylbenzenes. J. Chem. Eng. Data 60, 89–103 (2015)CrossRefGoogle Scholar
  21. 21.
    Chickos, J.S., Acree, W.E., Liebman, J.F.: Estimating solid–liquid phase change enthalpies and entropies. J. Phys. Chem. Ref. Data 28, 1535–1673 (1999)CrossRefGoogle Scholar
  22. 22.
    Verevkin, S.P.: Emel’yanenko, V.N., Notario, R., Roux, M.V., Chickos, J.S., Liebman, J.F.: rediscovering the wheel. Thermochemical analysis of energetics of the aromatic diazines. J. Phys. Chem. Lett. 3, 3454–3459 (2012)CrossRefGoogle Scholar
  23. 23.
    Pedley, J.P., Naylor, R.D., Kirby, S.P.: Thermochemical Data of Organic Compounds, 2nd edn. Chapman and Hall, London (1986)CrossRefGoogle Scholar
  24. 24.
    Swiderski, K., McLean, A., Gordon, C.M., Vaughan, D.H.: Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem. Commun. 10, 2178–2179 (2004)CrossRefGoogle Scholar
  25. 25.
    Coker, T.G., Wunderlich, B., Janz, G.J.: Melting mechanisms of ionic salts. Tetra-n-amyl ammonium thiocyanate. Trans. Faraday Soc. 65, 3361–3368 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Andrei V. Yermalayeu
    • 1
  • Dzmitry H. Zaitsau
    • 2
  • Vladimir N. Emel’yanenko
    • 2
  • Sergey P. Verevkin
    • 1
    • 2
  1. 1.Department of Physical ChemistryUniversity of RostockRostockGermany
  2. 2.Department of Physical ChemistryKazan Federal UniversityKazanRussia

Personalised recommendations