Skip to main content
Log in

Volumetric and Solvation Properties of Glycyl-Glycine and Glycyl-l-leucine in Aqueous Acetate Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities of glycyl-glycine (diglycine) and glycyl-l-leucine, in water and in aqueous sodium acetate, potassium acetate, magnesium acetate and calcium acetate solutions, were measured at 298.15 K. The apparent molar volumes, V 1, and the partial molar volumes, \( \bar{V}_{1} \), of diglycine and glycyl-l-leucine have been calculated. The solvation number, n S, of diglycine was also calculated. The limiting apparent molar volumes of the studied peptides were also analyzed in terms of the Setschenow relationship. The effect of the acetate salt solutions on the volumetric properties of the studied peptides was also discussed in terms of the Setschenow coefficients, k 1. The results indicate that the limiting apparent molar volume in aqueous acetate solutions is higher than that in water and the values increase with the concentration of the co-solutes (NaA, KA, MgA and CaA). The results indicate that the peptide interactions are stronger with MgA/CaA than NaA/KA. Also the data suggest that the peptide interactions are stronger with NaA than KA and with MgA than CaA. Further, the limiting apparent molar volume values increase from diglycine to glycyl-l-leucine. It was also noted that the solvation numbers for the diglycine in aqueous acetate salt solutions are less than in water and decrease as the concentration of acetate salt increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Howl, J.: Peptide Synthesis and Applications, vol. 298. Humana Press, Totowa (2005)

    Book  Google Scholar 

  2. Owusu-Apenten, R.K.: Bioactive Peptides: Applications for Improving Nutrition and Health. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  3. Lu, J., Wang, X.J., Yang, X., Ching, C.B.: Solubilities of glycine and its oligopeptides in aqueous solutions. J. Chem. Eng. Data 51, 1593–1596 (2006)

    Article  CAS  Google Scholar 

  4. Yuan, Q., Li, Z.-F., Wang, B.-H.: Partial molar volumes of l-alanine, DL-serine, DLl-threonine, l-histidine, glycine, and glycyl-glycine in water, NaCl, and DMSO aqueous solutions at T = 298.15. J. Chem. Thermodyn. 38, 20–33 (2006)

    Article  CAS  Google Scholar 

  5. Badarayani, R., Kumar, A.: Effect of tetra-n-alkyl ammonium bromides on the volumetric properties of glycine, 1-alanine and glycyl-glycine at T = 298.15. J. Chem. Thermodyn. 36, 49–58 (2004)

    Article  CAS  Google Scholar 

  6. Soto, A., Arce, A., Khoshkbarchi, M.K.: Thermodynamics of diglycine and triglycine in aqueous NaCl solutions: apparent molar volume, isentropic compressibility, and refractive index. J. Solution Chem. 33, 11–21 (2004)

    Article  CAS  Google Scholar 

  7. Singh, S.K., Kundu, A., Kishore, N.: Interaction of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethyl ammonium bomide at T = 298.15: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004)

    Article  CAS  Google Scholar 

  8. Lin, G., Lin, R., Ma, L.: The limiting partial molar volume and apparent molal volume of glycyl-glycine in aqueous KCl solution at 298.15 and 308.15 K. Thermochim. Acta 430, 31–34 (2005)

    Article  CAS  Google Scholar 

  9. Breil, M.P., Mollerup, J.M., Rudolph, E.S.J., Ottens, M., Van der Wielen, L.A.M.: Densities and solubilities of glycyl-glycine and glycyl-l-alanine in aqueous electrolyte solutions. Fluid Phase Equil. 215, 221–225 (2004)

    Article  CAS  Google Scholar 

  10. Shahidi, F., Farrell, P.G., Edwards, J.T.: Partial molal volumes of organic compounds in water III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976)

    Article  CAS  Google Scholar 

  11. Hoffmeister, F.: Zur lehre von der wirkung der salze zweite mittheilung. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)

    Article  Google Scholar 

  12. Baldwin, R.L.: How Hoffmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996)

    Article  CAS  Google Scholar 

  13. Anderson, C.F., Record, M.T.: Salt dependence of oligoion–polyion binding: a thermodynamic description based on preferential interaction coefficients. J. Phys. Chem. 97, 7116–7126 (1993)

    Article  CAS  Google Scholar 

  14. Jencks, W.P.: Catalysis in Chemistry and Enzymology, pp. 358–392. Dover, New York (1987)

    Google Scholar 

  15. Collins, K.D., Washabaugh, M.W.: The Hoffmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18, 323–422 (1985)

    Article  CAS  Google Scholar 

  16. Marcus, Y., Hefter, G.: Ion pairing. Chem. Rev. 106, 4585–4621 (2006)

    Article  CAS  Google Scholar 

  17. Singh, S.K., Kishore, N.: Partial molar volumes of amino acids and peptides in aqueous salt solutions at 25 °C and a correlation with stability of proteins in the presence of salts. J. Solution Chem. 32, 117–135 (2003)

    Article  CAS  Google Scholar 

  18. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetyl amino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  19. Iqbal, M., Verrall, R.E.: Partial molar volumes and adiabatic compressibilities of glycyl peptides at 25 °C. J. Phys. Chem. 91, 967–971 (1987)

    Article  CAS  Google Scholar 

  20. Setchenow, M.: Action de l’acide carbonique sur les solutions des sels a acides forts etude absortiometrique. Ann. Chim. Phys. 25, 226–270 (1892)

    Google Scholar 

  21. Cohn, E.J., Edsall, J.T.: Proteins, Amino Acids and Peptides. Reinhold Publishing, New York (1943)

    Google Scholar 

  22. Bhat, R., Ahluwalia, J.C.: Partial molal heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)

    Article  CAS  Google Scholar 

  23. Venkatesu, P., Lee, M.J., Lin, H.M.: Densities of aqueous solutions containing model compounds of amino acids and ionic salts at T = 298.15 K. J. Chem. Thermodyn. 39, 1206–1216 (2007)

    Article  CAS  Google Scholar 

  24. Banipal, T.S., Kaur, D., Banipal, P.K., Singh, G.: Interactions of some peptides with sodium acetate and magnesium acetate in aqueous solutions at 298.15 K: A volumetric approach. J. Mol. Liq. 140, 54–60 (2008)

    Article  CAS  Google Scholar 

  25. Millero, J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  26. Terasawa, S., Itsuki, H., Arakawa, S.: Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 79, 2345–2351 (1975)

    Article  CAS  Google Scholar 

  27. Gucker, F.T., Ford Jr, W.L., Moser, C.E.: The apparent and partial molal heat capacities and volumes of glycine and glycolamide. J. Phys. Chem. 43, 153–168 (1939)

    Article  CAS  Google Scholar 

  28. Millero, F.J., Ward, G.K., Lepple, F.K., Hoff, E.V.: Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45° at 1 atm. J. Phys. Chem. 78, 1636–1643 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid I. El-Dossoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dossoki, F.I. Volumetric and Solvation Properties of Glycyl-Glycine and Glycyl-l-leucine in Aqueous Acetate Solutions. J Solution Chem 44, 264–279 (2015). https://doi.org/10.1007/s10953-015-0314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0314-4

Keywords

Navigation