Abstract
The interaction of 1-dodecyl carbamoyl methylene pyridinium chloride (DAPC) with bovine serum albumin (BSA) was investigated by UV–Vis absorption, CD and fluorescence spectroscopies. The results of fluorescence titration reveal that DAPC strongly quenched the intrinsic fluorescence of BSA and caused a blue shift of the emission wavelength through a static quenching mechanism. The reduction of the binding constant (K A) and number of binding sites (n) between DAPC and BSA was studied with increasing temperature. The binding process is exothermic and entropy driven. The distance r between the donor of BSA and the acceptor of DAPC decreases with increasing concentration of DAPC. Furthermore, CD spectra and synchronous fluorescence spectra shows that DAPC induced conformational changes of BSA.
Similar content being viewed by others
References
Dudev, T., Lim, C.: Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773–788 (2003)
Ruso, J.M., Deo, N., Somasundaran, P.: Complexation between dodecyl sulfate surfactant and zein protein in solution. Langmuir 20, 8988–8991 (2004)
Liu, J.Q., Tian, J.N., Tian, X., Hu, Z.D.: Interaction of isofraxidin with human serum albumin. Bioorg. Med. Chem. 12, 469–474 (2004)
Zhang, L.N., Wu, F.Y., Liu, A.H.: Study of the interaction between 2,5-di-[2-(4-hydroxy-phenyl) ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A 79, 97–103 (2011)
He, W.Y., Li, Y., Hu, Z.: Specific interaction of chalcone–protein: cardamonin binding site II on the human serum albumin molecule. Biopolymers 79, 48–57 (2005)
Liu, Y.H., Zhang, L.J., Liu, R.T.: Spectroscopic identification of interactions of Pb2+ with bovine serum albumin. J. Fluoresc. 22, 239–245 (2012)
Yang, Y., Yu, X., Tong, W., Lu, S., Liu, H., Yao, Q., Zhou, H.: Investigation of the interaction between novel spiro thiazolo [3,2-a][1,3,5] triazines and bovine serum albumin by spectroscopic methods. J. Solution Chem. 42, 666–675 (2013)
Zhou, T., Ao, M.Q., Xu, G.Y., Liu, T.: Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: Effects of surfactant architecture. J. Colloid Interface Sci. 389, 175–181 (2013)
Zhao, R., Xie, Y., Tan, Y., Tan, C., Jiang, Y.: Binding of a bcl-2 family inhibitor to bovine serum albumin: fluorescence quenching and molecular docking study. Protein Pept. Lett. 19, 945–954 (2012)
Fainerman, V.B., Zholob, S.A., Leser, M.: Competitive absorption from mixed nonionic surfactant/protein solutions. J. Colloid Interface Sci. 274, 496–501 (2004)
Yao, Q., Yu, X., Zheng, T., Liu, H., Yang, Y., Yi, P.: Spectroscopic studies on the interaction of carteolol hydrochloride and urea-induced bovine serum albumin. Spectrochim. Acta A 113, 447–451 (2013)
Turro, N.J., Lei, X.G., Ananthapadmanabhan, K.P., Aronson, M.: Spectroscopic probe analysis of protein–surfactant interactions: the BSA/SDS system. Langmuir 11, 2525–2533 (1995)
Duan, L., Yang, L., Xiong, H., Zhang, X., Wang, S.: Studies on the electrochemistry of rutin and its interaction with bovine serum albumin using a glassy carbon electrode modified with carbon-coated nickel nanoparticles. Microchim. Acta 180, 355–361 (2013)
Sharma, A., Pasha, J.M., Deep, S.: Effect of the sugar and polyol additives on the aggregation kinetics of BSA in the presence of N-cetyl-N, N, N-trimethyl ammonium bromide. J. Colloid Interface Sci. 350, 240–248 (2010)
Usman, M., Siddiq, M.: Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin. J. Chem. Thermodyn. 58, 359–366 (2013)
Lissi, E., Abuin, E., Lanio, M.E.: A new and simple procedure for the evaluation of the association of surfactants to proteins. J. Biochem. Biophys. Methods 50, 261–268 (2002)
Gelamo, E.L., Silva, C.H.T.P., Imasato, H., Tabak, M.: Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim. Biophys. Acta 1594, 84–99 (2002)
Mote, U.S., Han, S.H., Patil, S.R., Kolekar, G.B.: Effect of temperature and pH on interaction between bovine serum albumin and cetylpyridinium bromide: fluorescence spectroscopic approach. J. Lumin. 130, 2059–2064 (2010)
Quagliotto, P., Barbero, N., Barolo, C., Artuso, E.: Synthesis and properties of cationic surfactants with tuned hydrophylicity. J. Colloid Interface Sci. 340, 269–275 (2009)
Buciñski, A., Socha, A., Wnuk, M., Bqczek, T., Nowaczyk, A.: Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans. J. Microbiol. Methods 76, 25–29 (2009)
Loftsson, T., Thorsteinsson, T., Másson, M.: Hydrolysis kinetics and QSAR investigation of soft antimicrobial agents. J. Pharm. Pharmacol. 57, 721–727 (2005)
Sundararaman, M., Kumar, R.R., Venkatesan, P., llangovan, A.: 1-Alkyl-(N,N-dimethy lamino)pyridinium bromides: inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol. 62, 241–248 (2013)
Wang, Q., Yan, J., He, J., Bai, K., Li, H.: Characterization of the interaction between 3-oxotabersonine and two serum albumins by using spectroscopic techniques. J. Lumin. 138, 1–7 (2013)
Abou-Zied, O.K., Al-Shihi, O.I.: Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 32, 10793–10801 (2008)
Wu, D., Wei, Q., Du, Y.: Quenching of the intrinsic fluorescence of bovine serum albumin by phenylfluorone–Mo(VI) complex as a probe. Int. J. Biol. Macromol. 37, 69–72 (2005)
Burstein, E.A., Vedenkina, N.S., Ivkova, M.N.: Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263–279 (1973)
Paramaguru, G., Kathiravan, A., Selvaraj, S., Venuvanalingam, P.: Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies. J. Hazard. Mater. 175, 985–991 (2010)
Gong, A.Q., Zhu, X.S., Hu, Y.Y., Yu, S.H.: A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumin and its analytical application. Talanta 73, 668–673 (2007)
Wei, Y.L., Li, J.Q., Dong, C., Shuang, S.M., Liu, D.S.: Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy. Talanta 70, 377–382 (2006)
Li, L., Wang, Y., Song, G., Wu, S., Chu, P.K., Xu, Z.: Bonding strength of fluorinated and hydrogenated surfactant to bovine serum albumin. J. Fluorine Chem. 130, 870–877 (2009)
Tu, S., Jiang, X., Zhou, L., Yin, W., Wang, H., Duan, M., Liu, P., Jiang, X.: Study of the interaction of gemini surfactant NAE12-4-12 with bovine serum albumin. J. Lumin. 132, 381–385 (2012)
Ashoka, S., Seetharamappa, J., Kandagal, P.B., Shaikh, S.M.T.: Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J. Lumin. 121, 179–186 (2006)
Wang, H., Jiang, X., Zhou, L., Cheng, Z., Yin, W., Duan, M., Liu, P., Jiang, X.: Interaction of NAEn-s-n gemini surfactants with bovine serum albumin: a structure-activity probe. J. Lumin. 134, 138–147 (2013)
Cheng, Z.J., Zhang, Y.T.: Spectroscopic investigation on interaction of the bioactive component dl-tetrahydropalmatine to bovine serum albumin. J. Mol. Struct. 876, 308–312 (2008)
Sarkar, M., Paul, S.S., Mukherjea, K.K.: Interaction of bovine serum albumin with a psychotropic drug alprazolam: physicochemical, photophysical and molecular docking studies. J. Lumin. 142, 220–230 (2013)
Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)
Cheng, Z.J.: Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol. Biol. Rep. 39, 9493–9508 (2012)
Cristobel, G., Dos, R., Pierre, D.J.M.: Fluorescence resonance energy transfer spectroscopy reliable “ruler” for measuring structural changes in proteins. J. Struct. Biol. 115, 175–185 (1995)
Qin, Y., Zhang, Y., Yan, S., Ye, L.: A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern–Volmer equation. Spectrochim. Acta A 75, 1506–1510 (2010)
Kumar, R.S., van den Bergh, H., Wagnières, G.: Probing the interaction between a surfactant–cobalt (III) complex and bovine serum albumin. J. Solution Chem. 41, 294–306 (2012)
Guo, X.J., Hao, A.J., Han, X.W., Kang, P.L., Jiang, Y.C., Zhang, X.J.: The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep. 38, 4185–4192 (2011)
Yu, X., Liu, R., Yang, F., Ji, D., Li, X., Chen, J., Huang, H., Yi, P.: Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. J. Mol. Struct. 985, 407–412 (2011)
Wang, C.X., Yan, F.F., Zhang, Y.X., Ye, L.: Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin. J. Photochem. Photobiol. A 192, 23–28 (2007)
Chen, J., Jiang, X.Y., Chen, X.Q., Chen, Y.: Effect of temperature on the metronidazole–BSA interaction: multi–spectroscopic method. J. Mol. Struct. 876, 121–126 (2008)
Kandagal, P.B., Seetharamappa, J., Shaikh, S.M.T., Manjunatha, D.H.: Binding of trazodone hydrochloride with human serum albumin: a spectroscopic study. J. Photochem. Photobiol. A 185, 239–244 (2007)
Zhu, G.F., Wang, Y., Liu, J., Wang, H., Xi, L., Du, L.F.: Interaction between ginkgolic acid and human serum albumin by spectroscopy and molecular modeling methods. J. Solution Chem. 43, 1232–1249 (2014)
Li, J.F., Li, J.Z., Jiao, Y., Dong, C.: Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochim. Acta A 118, 48–54 (2014)
Shahabadi, N., Maghsudi, M.: Binding studies of a new copper(II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. J. Mol. Struct. 929, 193–199 (2009)
Hu, Y.J., Liu, Y., Shen, X.S., Fang, X.Y., Qu, S.S.: Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J. Mol. Struct. 738, 143–147 (2005)
Mandal, G., Bardhan, M., Ganguly, T.: Interaction of bovine serum albumin and albumin–gold nanoconjugates with l-aspartic acid. a spectroscopic approach. Colloids Surf. B 81, 178–184 (2010)
Hu, Y.J., Yue, H.L., Li, X.L., Zhang, S.S.: Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J. Photochem. Photobiol. B 112, 16–22 (2012)
Acknowledgments
This work was supported by the Science Research Project of the Ministry of Education of Heilongjiang Province of China (2012TD012, 12511Z030), the National Natural Science Foundation of Heilongjiang Province (B201114, B201313) and the Science Research Project of Key Laboratory of Fine Chemicals of College of Heilongjiang Province of China (JX201210).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, Z., Guo, X., Feng, Z. et al. Spectroscopic Investigation of the Interaction of Pyridinium Surfactant with Bovine Serum Albumin. J Solution Chem 44, 293–306 (2015). https://doi.org/10.1007/s10953-015-0304-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-015-0304-6