Skip to main content
Log in

Liquid–Liquid Equilibria for Mixtures of Hexadecane and Ethanol with Imidazolium-Based Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The applicability of 1-alkyl-imidazoluim-based ionic liquids (ILs) for the extraction of ethanol from hexadecane by solvent extraction was studied by determining the liquid–liquid equilibrium (LLE) data for the ternary systems: {hexadecane (1) + ethanol (2) + 1,3-dimethylimidazolium methyl sulfate, [MMIM][MeSO4] (3) or 1-ethyl-3-methylimidazolium methyl sulfate, [EMIM][MeSO4] (3), or 1-butyl-3-methylimidazolium methyl sulfate, [BMIM][MeSO4] (3)} at T = 298.15 K and p = 1 atm. The selectivities and distribution coefficients of the solute, derived from the measured tie-line data, were used to examine the ability of these ILs as solvents to extract ethanol from a hexadecane-ethanol mixture. The temperature dependency was investigated by measuring the LLE data for {hexadecane (1) + ethanol (2) + [MMIM][MeSO4] (3)} at T = 313.15 K and p = 1 atm. The Othmer–Tobias and Hand equations were used to establish the quality of the LLE data. Finally, the experimental tie-line data were correlated using the Non-Random Two Liquid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poole, C.F.: Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J. Chromatogr. A 1037, 49–82 (2004)

    Article  CAS  Google Scholar 

  2. Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)

    Article  Google Scholar 

  3. Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)

    Article  CAS  Google Scholar 

  4. Freemantle, M.: Designer solvents: ionic liquids may boost clean technology development. Chem. Eng. News 76, 32–37 (1998)

    Article  Google Scholar 

  5. Brennecke, J.F., Maginn, E.J.: Ionic liquids: innovative fluids for chemical processing. AIChE J. 47, 2384–2389 (2001)

    Article  CAS  Google Scholar 

  6. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  7. Ganjali, M.R., Khoshsafar, H., Shirzadmehr, A., Javanbakht, M., Faridbod, F.: Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs). Int. J. Electrochem. Sci. 4, 435–443 (2009)

    CAS  Google Scholar 

  8. Baranyai, K.J., Deacon, G.B., Macfarlane, D.R., Pringle, J.M., Scott, J.L.: Thermal degradation of ionic liquids at elevated temperatures. Aust. J. Chem. 57, 145–147 (2004)

    Article  CAS  Google Scholar 

  9. Smiglak, M., Reichert, W.M., Holbrey, J.D., Wilkes, J.S., Sun, L.Y., Thrasher, J.S., Kirichenko, K., Singh, S., Katritzky, A.R., Rogers, R.D.: Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. 24, 2554–2556 (2006)

    Article  Google Scholar 

  10. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)

    Article  CAS  Google Scholar 

  11. Rebelo, L.P.N., Lopes, J.N.C., Esperancua, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005)

    Article  CAS  Google Scholar 

  12. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997)

    Article  CAS  Google Scholar 

  13. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  CAS  Google Scholar 

  14. Matsumoto, K., Hagiwara, R., Ito, Y.: Room-temperature ionic liquids with high conductivities and wide electrochemical windows: N-Alkyl-N-methylpyrrolidinium and N-alkyl-N-methylpiperidinium fluorohydrogenates. Electrochem. Solid-State. Lett. 7, 41–44 (2004)

    Article  Google Scholar 

  15. Kuang, D., Ito, S., Wenger, B., Klein, C., Moser, J.E., Humphry-Baker, R., Zakeeruddin, S.M., Gratzel, M.: The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143, 3099–3108 (1996)

    Article  Google Scholar 

  16. Lewandowski, A., Galinski, M.: Carbon–ionic liquid double-layer capacitors. J. Phys. Chem. Solids 65, 281–286 (2004)

    Article  CAS  Google Scholar 

  17. Huang, J.F., Luo, H., Liang, C., Sun, I.-W., Baker, G.A., Dai, S.: Hydrophobic Brønsted acid–base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. J. Am. Chem. Soc. 37, 12784–12785 (2005)

    Article  Google Scholar 

  18. Ding, J., Zhou, D., Spinks, G., Wallace, G., Forsyth, S., Forsyth, M., Macfarlane, D.R.: Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem. Mater. 15, 2392–2398 (2003)

    Article  CAS  Google Scholar 

  19. Nakagawa, H., Izuchi, S., Kuwana, K., Nukuda, T., Nihara, Y.J.: Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. Electrochem. Soc. 150, 695–700 (2003)

    Article  Google Scholar 

  20. Kedra-Krolik, K., Fabrice, M., Jaubert, J.N.: Extraction of thiophene or pyridine from gasoline and diesel desulfurization. Ind. Eng. Chem. Res. 50, 2296–2306 (2011)

    Article  CAS  Google Scholar 

  21. Pereiro, A.B., Deivea, F.J., Esperanc, J.M.S.S., Rodriguez, A.: Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilib. 291, 13–17 (2010)

    Article  CAS  Google Scholar 

  22. Pereiro, A.B., Rodriguez, A.: Effective extraction in packed column of ethanol from the azeotropic mixture ethanol + hexane with an ionic liquid as solvent. Chem. Eng. J. 153, 80–85 (2009)

    Article  CAS  Google Scholar 

  23. Pereiro, A.B., Rodriguez, A.: Purification of hexane with effective extraction using ionic liquid as solvent. Green Chem. 11, 346–350 (2009)

    Article  CAS  Google Scholar 

  24. Corderi, S., Gonzalez, B.: Ethanol extraction from its azeotropic mixture with hexane employing different ionic liquids as solvents. Chem. Thermodyn. 55, 138–143 (2012)

    Article  CAS  Google Scholar 

  25. Seoane, R.G., Gonzalez, E.J., Gonzalez, B.: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures. J. Chem. Thermodyn. 53, 152–157 (2012)

    Article  CAS  Google Scholar 

  26. Letcher, T.M., Deenadayalu, N., Soko, B., Ramjugernath, D., Naicker, P.K.: Ternary liquid–liquid equilibria for mixtures of 1-methyl-3-octyl-imidazolium chloride + an alkanol + an alkane at 298.2 K and 1 atm. J. Chem. Eng. Data 48, 904–907 (2003)

    Article  CAS  Google Scholar 

  27. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  28. Othmer, D., Tobias, P.: Liquid–liquid extraction data—the line correlation. Ind. Eng. Chem. 34, 693–696 (1942)

    Article  CAS  Google Scholar 

  29. Hand, D.B.: Dineric distribution. J. Phys. Chem. 34, 1961–2000 (1930)

    Article  CAS  Google Scholar 

  30. Pereiro, A.B., Canosa, J., Rodriguez, A.: Liquid–liquid equilibria of 1,3-dimethylimidazolium methyl sulfate with ketones, dialkyl carbonates and acetates. Fluid Phase Equilb. 254, 150–157 (2007)

    Article  CAS  Google Scholar 

  31. Pereiro, A.B., Rodriguez, A.: Ternary (liquid + liquid) equilibria of the azeotrope (ethyl acetate + 2-propanol) with different ionic liquids at T = 298.15 K. J. Chem. Thermodyn. 39, 1608–1613 (2007)

    Article  CAS  Google Scholar 

  32. Tomé, L.I.N., Carvalho, P.J., Freire, M.G., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P., Gardas, R.L.: Measurements and correlation of high pressure densities of imidazolium-based ionic liquids. J. Chem. Eng. Data 53, 1914–1921 (2008)

    Article  Google Scholar 

  33. Acre, A., Rodríguez, H., Soto, A.: Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chem. 9, 247–253 (2007)

    Article  Google Scholar 

  34. Requejo, P.F., Gonzalez, E.J., Macedo, E.A., Dominguez, A.: Effect of the temperature on the physical properties of the pure ionic liquids on 1-ethyl-3methyl imidazolium methyl sulfate and characterisation of its binary mixtures with alcohols. J. Chem. Thermodyn. 74, 193–200 (2014)

    Article  CAS  Google Scholar 

  35. Matsuda, H., Ochi, K.: Liquid–liquid equilibrium data for binary alcohol + n-alkane (C10–C16) systems: methanol + decane, ethanol + tetradecane, and ethanol + hexadecane. Fluid Phase Equil. 224, 31–37 (2004)

    Article  CAS  Google Scholar 

  36. Atkins, M.P., Manan, N.A., Jacquemin, J., Hardacre, C., Rooney, D.: Phase equilibria of binary and ternary systems containing ILs, dodecane, and cyclohexane carboxylic acid. Sep. Sci. Technol. 47, 312–324 (2012)

    Article  Google Scholar 

  37. Crosthwaite, J.M., Aki, S.N.V.K., Maginn, E.J., Brennecke, J.F.: Liquid-phase behaviour of imidazolium-based ionic liquids with alcohols. J. Phys. Chem. B 108, 5113–5119 (2004)

    Article  CAS  Google Scholar 

  38. Chapeaux, A., Simoni, L.D., Stadtherr, M.A., Brennecke, J.F.: Liquid phase behavior of ionic liquids with water and 1-octanol and modeling of 1-octanol/water partition coefficients. J. Chem. Eng. Data 52, 2462–2467 (2007)

    Article  CAS  Google Scholar 

  39. Garcia, J., Fernandez, A., Torrecilla, J.S., Oliet, M., Rodriguez, F.: Liquid–liquid equilibria for hexane + benzene + 1-ethyl-3-methylimidazolium ethylsulfate at (298.2, 313.2 and 328.2) K. Fluid Phase Equilib. 282, 117–120 (2009)

    Article  CAS  Google Scholar 

  40. Garcia, J., Fernandez, A., Torrecilla, J.S., Oliet, M., Rodriguez, F.: Ternary liquid–liquid equilibria measurement for hexane and benzene with the ionic liquid 1-butyl-3-methylimidazolium methylsulfate at T = (298.2, 313.2, and 328.2) K. J. Chem. Eng. Data 55, 258–261 (2010)

    Article  CAS  Google Scholar 

  41. Lu, Y., Yang, X., Luo, G., Yang, X.C., Luo, G.S.: Liquid–liquid equilibria for benzene plus cyclohexane + 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 55, 510–512 (2010)

    Article  CAS  Google Scholar 

  42. Gonzalez, E.J., Calvar, N., Gomez, E., Dominguez, A.: Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure: effect of the size of the aliphatic hydrocarbons. J. Chem. Thermodyn. 42, 104–109 (2010)

    Article  CAS  Google Scholar 

  43. Santiago, R.S., Aznar, M.: Liquid–liquid equilibrium in ternary ionic liquid systems by UNIFAC: new volume, surface area and interaction parameters. Part II. Fluid Phase Equilib. 303, 111–114 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation (NRF) through the Thuthuka program and the SARChI South African Research Chairs Initiative - NRF-DST for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deresh Ramjugernath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungar Ram, N., Bahadur, I., Letcher, T.M. et al. Liquid–Liquid Equilibria for Mixtures of Hexadecane and Ethanol with Imidazolium-Based Ionic Liquids. J Solution Chem 44, 593–605 (2015). https://doi.org/10.1007/s10953-015-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0294-4

Keywords

Navigation