Skip to main content
Log in

Transport and Thermodynamic Properties of Ethylammonium Nitrate–Water Binary Mixtures: Effect of Temperature and Composition

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Physical properties such as densities, ρ, viscosities, η, and conductivities, κ, have been measured for the binary mixtures of the ionic liquid ethylammonium nitrate, EtNH3NO3, with water over the entire molar fraction range at various temperatures ranging from 293.15 to 318.15 K and under ambient pressure. Strong effects of the composition and temperature on these properties have been observed. Experimental densities and viscosities were used to calculate the corresponding excess properties. The variations of excess molar volume and excess Gibbs energy against the ionic liquid fraction show complementary extrema (minima and maxima with opposite signs). The excess molar volumes and excess viscosity deviations are well fitted using the Redlich–Kister polynomial. Moreover, the viscosity was found to be temperature dependent and followed the Arrhenius law. Variations of the activation energies for viscous flow versus the ionic liquid content revealed a modification in the medium’s structure. The conductivity–temperature relationship was found to be better represented by the Vogel–Tammann–Fulcher model than with the Arrhenius equation. In addition, variations of the conductivity with composition are well described by the Casteel–Amis equation. The impact of addition of the ionic liquid to water on the viscosity and the conductivity have been also examined using Walden’s rule, which shows that viscosity is highly correlated to conductivity for ionic liquid molar fractions higher than ca. 0.2. Activation thermodynamic parameters for viscous flow, calculated from the viscosity data, reveal that changes in the medium structure occur at ca. 0.2 and 0.8 molar fractions of ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T.: Ionic liquids in synthesis. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  2. Salminen, J., Papaiconomou, N., Kumar, R.A., Lee, J.-M., Kerr, J., Newman, J., Prausnitz, J.: Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilib. 261, 421–426 (2007)

    Article  CAS  Google Scholar 

  3. Zhang, S., Lu, X., Zhou, Q., Li, X., Zhang, X., Li, S.: Ionic Liquids: Physicochemical Properties. Elsevier, Amsterdam (2009)

    Google Scholar 

  4. Egashira, M., Todo, H., Yoshimoto, N., Morita, M., Yamaki, J.-I.: Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J. Power Sources 174, 560–564 (2007)

    Article  CAS  Google Scholar 

  5. Bockris, J.O’.M., Reddy, A.K.N.: Modern electrochemistry. Kluwer Academic, Plenum Publishers, New York (2002)

    Google Scholar 

  6. Kubisa, P.: Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci. 29, 3–12 (2004)

    Article  CAS  Google Scholar 

  7. Annat, G., MacFarlane, D.R., Forsyth, M.: Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements. J. Phys. Chem. B 111, 9018–9024 (2007)

    Article  CAS  Google Scholar 

  8. Xu, W., Angell, C.A.: Solvent-free electrolytes with aqueous solution-like conductivities. Science 302, 422–425 (2003)

    Article  CAS  Google Scholar 

  9. Zarrougui, R., Dhahbi, M., Lemordant, D.: Electrochemical behaviour of iodine redox couples in aprotic and protic RTILs: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ethylammonium nitrate. J. Electroanal. Chem. 15, 189–195 (2014)

    Article  Google Scholar 

  10. Garlitz, J.A., Summers, C.A., Flowers, R.A., Borgstahl, G.E.O.: The crystallization of lysozyme and thaumatin with ionic liquid. Acta Crystallogr. Sect. D 55, 2037–2038 (1999)

    Article  CAS  Google Scholar 

  11. Shotwell, J.B., Flowers, R.A.: Electrochemical investigation of the solvolytic properties of ethylammonium nitrate (EAN) and propylammonium nitrate (PAN). Electroanalysis 12, 223–226 (2000)

    Article  CAS  Google Scholar 

  12. Allen, M., Evans, D.F., Lumry, R.: Thermodynamic properties of the ethylammonium nitrate + water system: Partial molar volumes, heat capacities, and expansivities. J. Solution Chem. 14, 549–560 (1985)

    Article  CAS  Google Scholar 

  13. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)

    Article  CAS  Google Scholar 

  14. Sarda, S.R., Kale, J.D., Wasmatkar, S.K., Kadam, V.S., Ingole, P.G., Jadhav, W.N., Pawar, R.P.: An efficient protocol for the synthesis of 2-amino-4,6-diphenylpyridine-3-carbonitrile using ionic liquid ethylammonium nitrate. Mol. Divers. 13, 545–549 (2009)

    Article  CAS  Google Scholar 

  15. Benhlima, N., Turmine, M., Letellier, P., Naejus, R., Lemordant, D.: étude électrochimique du nitrate d’éthylammonium fondu à 298 K: établissement d’une échelle de potentiel redox. J. Chim. Phys. 95, 25–44 (1998)

    Article  CAS  Google Scholar 

  16. Lmartinot, L., Bari, D., Michaux, C.: Electrochemistry of uranium in ionic organic media: ethylammonium nitrate and acetamide–KSCN eutectic. J. Radioanal. Nucl. Chem. 170, 389–398 (1993)

    Article  Google Scholar 

  17. Zarrougui, R., Dhahbi, M., Lemordant, D.: Volumetric properties of ethylammonium nitrate + γ-butyrolactone binary systems: solvation phenomena from density and Raman spectroscopy. J. Solution Chem. 39, 1531–1548 (2010)

    Article  CAS  Google Scholar 

  18. Bouguerra, S., Malham, I.B., Letellier, P., Mayaffre, A., Turmine, T.: Part 2: limiting apparent molar volume of organic and inorganic 1:1 electrolytes in (water + ethylammonium nitrate) mixtures at 298 K—thermodynamic approach using Bahe-Varela pseudo-lattice theory. J. Chem. Thermodyn. 40, 146–154 (2008)

    Article  CAS  Google Scholar 

  19. Chagnes, A., Tougui, A., Carré, B., Ranganathan, N., Lemordant, D.: Abnormal temperature dependence of the viscosity of ethylammonium nitrate–methanol ionic mixtures. J. Solution Chem. 33, 247–255 (2004)

    Article  CAS  Google Scholar 

  20. Oleinikova, A., Bonetti, M.: The viscosity anomaly near the critical consolute point of the ionic ethylammonium nitrate-n-octanol mixture. J. Chem. Phys. 104, 3111–3119 (1996)

    Article  CAS  Google Scholar 

  21. Inove, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007)

    Article  Google Scholar 

  22. Comminges, C., Barhdadi, R., Laurent, M., Troupel, M.: Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J. Chem. Eng. Data 51, 680–685 (2006)

    Article  CAS  Google Scholar 

  23. Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N, N- dimethylformamide. Green Chem. 5, 618–622 (2003)

    Article  CAS  Google Scholar 

  24. Litaeim, Y., Dhahbi, M.: Measurements and correlation of viscosity and conductivity for the mixtures of ethylammonium nitrate with organic solvents. J. Mol. Liq. 155, 42–50 (2010)

    Article  CAS  Google Scholar 

  25. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)

    Article  CAS  Google Scholar 

  26. Lachwa, J., Morgado, P., Esperanca, J.M.S.S., Guedes, H.J.R., Lopes, J.N.C., Rebelo, L.P.N.: Fluid-phase behavior of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C6mim][NTf2], +C2–C8 n-alcohol mixtures: liquid–liquid equilibrium and excess volumes. J. Chem. Eng. Data 51, 2215–2221 (2006)

    Article  CAS  Google Scholar 

  27. Jones, G., Doles, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  28. Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33, 430–435 (1941)

    Article  Google Scholar 

  29. Zarrougui, R., Raouafi, N., Lemordant, D.: New series of green cyclic ammonium-based room temperature ionic liquids with alkylphosphite-containing anion: synthesis and physicochemical characterization. J. Chem. Eng. Data 59, 1193–1201 (2014)

    Article  CAS  Google Scholar 

  30. Pires, J., Timperman, L., Jacquemin, J., Balducci, A., Anouti, M.: Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquid + propylene carbonate) binary mixture. J. Chem. Thermodyn. 59, 10–19 (2013)

    Article  CAS  Google Scholar 

  31. Gu, G.Y., Bouvier, S., Wu, C., Laura, R., Rzeznik, M., Abraham, K.M.: 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 45, 3127–3139 (2000)

    Article  CAS  Google Scholar 

  32. Belieres, J.P., Angell, C.A.: Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 111, 4926–4937 (2007)

    Article  CAS  Google Scholar 

  33. Yoshizawa, M., Hirao, M., Ito-Akita, K., Ohno, H.: Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem. 11, 1057–1062 (2001)

    Article  CAS  Google Scholar 

  34. Taggougui, M., Diaw, M., Carré, B., Willmann, P., Lemordant, D.: Solvents in salt electrolyte: benefits and possible use as electrolyte for lithium-ion battery. Electrochim. Acta 53, 5496–5502 (2008)

    Article  CAS  Google Scholar 

  35. Huang, J.F., Chen, P.Y., Sun, I.W., Wang, S.P.: NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid. Inorg. Chim. Acta 320, 7–11 (2001)

    Article  CAS  Google Scholar 

  36. Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  37. Goldsack, D.E., Franchetto, R.: The viscosity of concentrated electrolyte solutions. I. Concentration dependence at fixed temperature. Can. J. Chem. 55, 1062–1072 (1977)

    Article  CAS  Google Scholar 

  38. Chirife, J., Buera, M.P.: A simple model for predicting the viscosity of sugar and oligosaccharide solutions. J. Food Eng. 33, 221–226 (1997)

    Article  Google Scholar 

  39. Zhu, A., Wang, J., Han, L., Fan, M.: Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chem. Eng. J. 147, 27–35 (2009)

    Article  CAS  Google Scholar 

  40. Abraham, M., Abraham, M.C.: Electrolytic conductance and viscosity of some mixed nitrate–water systems from fused salts to dilute solutions. Electrochim. Acta 31, 821–829 (1986)

    Article  CAS  Google Scholar 

  41. Zarrougui, R., Dhahbi, M., Lemordant, D.: Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate. J. Solution Chem. 39, 921–942 (2010)

    Article  CAS  Google Scholar 

  42. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths and Co., London (1959)

    Google Scholar 

  43. Miaja, G.G., Troncoso, J., Romani, L.: Excess properties for binary systems ionic liquid + ethanol: experimental results and theoretical description using the ERAS model. Fluid Phase Equilib. 274, 59–67 (2008)

    Article  Google Scholar 

  44. Zarrougui, R., Dhahbi, M., Lemordant, D.: Volumetric and transport properties of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide–methanol binary mixtures. Ionics 17, 343–352 (2011)

    Article  CAS  Google Scholar 

  45. Desnoyers, J.E., Perron, G.: Treatment of excess thermodynamic quantities for liquid mixtures. J. Solution Chem. 26, 749–755 (1997)

    Article  CAS  Google Scholar 

  46. Gemez, E., Gonzalez, B., Dominguez, A., Tojo, E., Tojo, J.: Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 51, 696–701 (2006)

    Article  Google Scholar 

  47. Erdey Gruz, T.: Transport phenomena in aqueous solutions. Wiley, New York (1974)

    Google Scholar 

  48. Yang, C., Ma, P., Zhou, Q.: Excess molar volume, viscosity, and heat capacity for the mixtures of 1,4-butanediol + water at different temperatures. J. Chem. Eng. Data 49, 582–587 (2004)

    Article  CAS  Google Scholar 

  49. Han, K.J., Oh, J.H., Park, S.J., Gmehling, J.: Excess molar volumes and viscosity deviations for the ternary system N, N-dimethylformamide + N-methylformamide + water and the binary subsystems at 298.15 K. J. Chem. Eng. Data 50, 1951–1955 (2005)

    Article  CAS  Google Scholar 

  50. Saleh, M.A., Akhtar, S., Ahmed, M.S., Hemayetuddin, M.: Density, excess molar volume, viscosity and thermodynamic activation of viscous flow of water + ethylenecarbonate. Phys. Chem. Liq. 43, 367–377 (2005)

    Article  CAS  Google Scholar 

  51. Meyer, R., Meyer, M., Metzger, J., Peneloux, A.: Thermodynamic and physicochemical properties of binary solvent. J. Chim. Phys. 62, 406–412 (1971)

    Google Scholar 

  52. Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, London (1941)

    Google Scholar 

  53. Eyring, H., John, M.S.: Significant Liquid Structure. Wiley, New York (1969)

    Google Scholar 

  54. Martins, J., Cardoso, M.J.E.M., Barcia, O.E.: Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res. 39, 849–854 (2000)

    Article  CAS  Google Scholar 

  55. Ali, A., Nain, A.K., Hyder, S.: Ion-solvent interaction of sodium iodide and lithium nitrate in dimethylformamide + ethanol mixtures at various temperatures. J. Indian Chem. Soc. 75, 501–505 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Zarrougui.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrougui, R., Dhahbi, M. & Lemordant, D. Transport and Thermodynamic Properties of Ethylammonium Nitrate–Water Binary Mixtures: Effect of Temperature and Composition. J Solution Chem 44, 686–702 (2015). https://doi.org/10.1007/s10953-014-0283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0283-z

Keywords

Navigation